Sources/First astronomical sources: Difference between revisions

From Wikiversity
Jump to navigation Jump to search
Content deleted Content added
mNo edit summary
Line 810: Line 810:
=First radios=
=First radios=


"In 1955, Bernard Burke and [[w:Kenneth Franklin|Kenneth Franklin]] detected bursts of radio signals coming from Jupiter at 22.2&nbsp;MHz.<ref name=Elkins>{{ cite book
"In 1955, Bernard Burke and Kenneth Franklin detected bursts of radio signals coming from Jupiter at 22.2&nbsp;MHz.<ref name=Elkins>{{ cite book
|author=Linda T. Elkins-Tanton
|author=Linda T. Elkins-Tanton
|year=2006
|year=2006
Line 830: Line 830:
|url=http://en.wikipedia.org/wiki/Jupiter
|url=http://en.wikipedia.org/wiki/Jupiter
|accessdate=2012-09-27 }}</ref>
|accessdate=2012-09-27 }}</ref>

"It would have been difficult to imagine the wonders that would later be revealed when Karl Jansky identified the first astronomical source of radio waves."<ref name=Black>{{ cite journal
|author=Eric D. Black, Ryan N. Gutenkunst
|title=An introduction to signal extraction in interferometric gravitational wave detectors
|journal=American Journal of Physics
|month=April
|year=2003
|volume=71
|issue=4
|pages=365-78
|url=http://link.aip.org/link/?ajp/71/365/1
|arxiv=
|bibcode=2003AmJPh..71..365B
|doi=10.1119/1.1531578
|pmid=
|accessdate=2014-01-09 }}</ref>


=First superluminals=
=First superluminals=

Revision as of 04:44, 10 January 2014

This image is an optical photograph of Comet McNaught. Credit: Fir0002/Flagstaffotos.
Completion status: Almost complete, but you can help make it more thorough.

In the context of radiation astronomy, the first astronomical source may not have been from the sky.

Development status: this resource is experimental in nature.

Hominins are intelligent life forms on Earth. It may be true that hominins seldom pay attention to those things that seldom affect them in a harmful way, or that are not edible, do not provide or are not useful for shelter, or have little positive effect on health and well-being.

Educational level: this is a primary education resource.

Curiosity may make everything something to pay attention to.

Educational level: this is a secondary education resource.
Educational level: this is a tertiary (university) resource.
Educational level: this is a research resource.
Type classification: this is an article resource.
Resource type: this resource contains a lecture or lecture notes.
Subject classification: this is an astronomy resource.

Notation

Notation: let the symbol Def. indicate that a definition is following.

Notation: let the symbols between [ and ] be replacement for that portion of a quoted text.

Notation: let the symbol ... indicate unneeded portion of a quoted text.

Sometimes these are combined as [...] to indicate that text has been replaced by ....

Universals

To help with definitions, their meanings and intents, there is the learning resource theory of definition.

Proof of concept

Def. evidence that demonstrates that a concept is possible is called proof of concept.

The proof-of-concept structure consists of

  1. background,
  2. procedures,
  3. findings, and
  4. interpretation.[1]

Control group

The findings demonstrate a statistically systematic change from the status quo or the control group.

A control group for the first astronomical source may include

  1. ancient detection,
  2. verifiable time stamp,
  3. hardcopy record, and
  4. artifacts.

Source astronomy

Source astronomy has its origins in the actions of intelligent life on Earth when they noticed things or entities falling from above and became aware of the sky.

Def. the point of origin of a ray, beam, or stream of small cross section traveling in a line is called a radiation source.

Is the sky a radiation source or an obstruction or interference between the observer and a source?

The same question may be asked when looking downward at the Earth's crust, regolith, or water below the observer.

The sky may have been thought of at one time as impenetrable. The same assumption may have occurred regarding the Earth below.

In the context of radiation astronomy, the first astronomical source may not have been from the sky. Sources of gamma radiation exist within the Earth's crust. While these may not seem like astronomical gamma-ray sources, cosmic rays penetrating the sky, impinging on the rocks on the Earth's surface may give off gamma-rays. Radiation traveling through the Earth toward the surface from beneath may also generate gamma rays.

Chronology

Early craters that may have an astronomical origin need to have artifacts that are unique to this origin.

Sky

"The sky, also known as the celestial dome, commonly refers to everything that lies a certain distance above the surface of Earth, including the atmosphere and the rest of outer space. In the field of astronomy, the sky is also called the celestial sphere. This is an imaginary dome where the sun, stars, planets, and the moon are seen to be traveling. The celestial sphere is divided into regions called constellations. Usually, the term sky is used from the point of view of the Earth's surface. However, the exact meaning of the term can vary; in some cases, the sky is defined as only the denser portions of the atmosphere, for example."[2]

Def. "[a]ny ... officially recognized[ region ]of the sky, including all stars and celestial bodies in the region"[3] is called a constellation.

Searching for the first astronomical source, or the first one per constellation, requires determining the exact boundaries of each constellation. There are 88 modern constellations that the International Astronomical Union (IAU) has used to divide the celestial sphere into 89 irregularly shaped boxes. The constellation Serpens is split into two separate sections, Serpens Caput (the snake's head) to the west and Serpens Cauda (the snake's tail) to the east.

Sources recorded to ancient constellations need to be translated to current coordinates and constellations.

Using detectors placed in the Earth, on Earth, or above the Earth's atmosphere, various emanations have been detected incoming from each of these constellations, whether through the Earth or not. Each area of the celestial sphere may have at least one source detected.

Radiation astronomy

Def. an action or process of throwing or sending out a traveling ray in a line, beam, or stream of small cross section is called radiation.

Rays may have a temporal, spectral, or spatial distribution.

They may also be dependent on other variables as yet unknown.

Particle radiation consists of a stream of charged or neutral particles, from the size of subatomic elementary particles upwards of rocky and gaseous objects to even larger more loosely bound entities. All of these are within the field of radiation astronomy.

Planetary science

"The outbursts of novae have been recorded for over 2000 years (for an historical review, see Duerbeck 2008)."[4]

"It was only in the 1920s during the “Great Debate” that it was realised that “ordinary” novae such as T Aur (1892 - often seen as the first well-studied nova outburst) were very distinct from “supernovae” such as S And (1885 - in M31)."[4]

"Later, Dwarf Novae (DNe) and Classical Novae (CNe) were in turn recognised as rather different beasts and certain of the Classical Novae were also subsequently reclassified as Recurrent Novae (RNe) when a second major outburst was recorded (the earliest example being T Pyx with the 1902 outburst repeating that first noted for this object in 1890)."[4]

"The existence of a constant bolometric phase of post-outburst development was first proposed following multifrequency observations of FH Ser (1970 - see e.g. Gallagher & Starrfield 1976). The initial optical decline is then due to a redistribution of flux to shorter wavelengths due to a decreasing mass-loss rate giving rise to a shrinkage of the effective (pseudo)photosphere at constant bolometric luminosity as steady nuclear burning continues on the WD surface."[4]

"V1974 Cyg was also the first nova to be observed with HST (Paresce et al. 1995; Krautter et al. 2002 - see Fig. 3) beginning 467 days after outburst."[4]

"RS Oph has had recorded outbursts in 1898, 1933, 1958,1967, 1985 and 2006, plus probable eruptions in 1907 and 1945. The optical behaviour from one outburst to the next is very similar. The central system comprises a high mass WD in a 455 day orbit with a red giant (M2III) and d (= 1.6±0.3 kpc) and NH (= 2.4 ± 0.6 x 1021 cm−2) are well defined (see Evans et al. 2008, and papers therein)."[4]

"The 1985 outburst was the first to be observed beyond the visual but it was only with the latest eruption on 2006 February 12 that very detailed radio imagery and X-ray observations in particular could be performed."[4]

Colors

"The [initial discovery of an infrared point source at 2.2 µ by Becklin and Neugebauer (1967)] BN source is also the first astronomical source for which polarization has been detected in the 8- to 14-µ part of the spectrum (Dyck et al. 1973)."[5]

Minerals

Theory of first sources

Entities

Sources

Objects

Strong forces

Electromagnetics

Weak forces

Continuum

Emission peaks

Absorption troughs

Bands

Background

First meteors

This diagram shows the orbit of a comet around the Sun with the orientation of the gas and dust tails. Credit: Fredrik.

Determining the first meteor source probably depends on determining the first meteor.

"A comet is a small solar system [object] that has a solid icy nucleus."[6] Icy meteors may have come from comets.

"Meteors may occur in showers, which arise when the Earth passes through a trail of debris left by a comet, or as "random" or "sporadic" meteors, not associated with a specific single cause. A number of specific meteors have been observed, largely by members of the public and largely by accident, but with enough detail that orbits of the meteoroids producing the meteors have been calculated. All of the orbits passed through the asteroid belt.[7]"[8]

"[A]rchival research [confirms] the presence of an ancient planetary nebula (PN), with an apparent hourglass morphology, ejected by the nova in a previous phase of evolution and into which the nova ejecta are now running."[9]

First cosmic rays

Some low energy cosmic rays originate or are associated with solar flares. Even these cosmic rays have too high an energy to originate from the solar photosphere. The coronal cloud in close proximity to the Sun may be a source or create them as it bombards the chromosphere from above.

"In particular we recognize a first trace of Vela, brightest gamma and radio galactic source, and smeared sources along Galactic Plane and Center [as a source of ultra high energy cosmic rays (UHECR)]."[10]

"The main correlated map is the 408 MHz one. The first astronomical source that seem to correlate is the main multiplet along CenA. This AGN source, the nearest extragalactic one, sits in the same direction of a far Centaurus Cluster (part of the Super-Galactic Plane). The blurring by random galactic magnetic field might spread the nearest AGN event along the same Super-Galactic Plane, explaining the AUGER group miss-understanding [3]."[10]

First neutrals

"Energetic neutral atoms (ENA), emitted from the magnetosphere with energies of ∼50 keV, have been measured with solid-state detectors on the IMP 7/8 and ISEE 1 spacecraft. The ENA are produced when singly charged trapped ions collide with the exospheric neutral hydrogen geocorona and the energetic ions are neutralized by charge exchange."[11]

"The IMAGE mission ... High Energy Neutral Atom imager (HENA) ... images [ENAs] at energies between 10 and 60 keV/nucleon [to] reveal the distribution and the evolution of energetic [ions, including protons] as they are injected into the ring current during geomagnetic storms, drift about the Earth on both open and closed drift paths, and decay through charge exchange to pre‐storm levels."[12]

"In 2009, NASA's Interstellar Boundary Explorer (IBEX) mission science team constructed the first-ever all-sky map [at right] of the interactions occurring at the edge of the solar system, where the sun's influence diminishes and interacts with the interstellar medium. A 2013 paper provides a new explanation for a giant ribbon of energetic neutral atoms – shown here in light green and blue -- streaming in from that boundary."[13]

"[T]he boundary at the edge of our heliosphere where material streaming out from the sun interacts with the galactic material ... emits no light and no conventional telescope can see it. However, particles from inside the solar system bounce off this boundary and neutral atoms from that collision stream inward. Those particles can be observed by instruments on NASA’s Interstellar Boundary Explorer (IBEX). Since those atoms act as fingerprints for the boundary from which they came, IBEX can map that boundary in a way never before done. In 2009, IBEX saw something in that map that no one could explain: a vast ribbon dancing across this boundary that produced many more energetic neutral atoms than the surrounding areas."[13]

""What we are learning with IBEX is that the interaction between the sun's magnetic fields and the galactic magnetic field is much more complicated than we previously thought," says Eric Christian, the mission scientist for IBEX at NASA's Goddard Space Flight Center in Greenbelt, Md. "By modifying an earlier model, this paper provides the best explanation so far for the ribbon IBEX is seeing.""[13]

First neutrons

Fairly large fluxes of neutrons have been observed during solar flares such as that of November 12, 1960, with a flux of 30-70 neutrons per cm-2 s-1.[14]

First protons

"The third largest solar proton event in the past thirty years took place during July 14-16, 2000, and had a significant impact on the earth's atmosphere."[15]

First beta particles

"Beta-particles leaving the upper surface of the lunar sample could trigger the upper beta detector, while the lower beta-detector was triggered by beta particles from the lower surface of the sample."[16]

First electrons

"The suprathermal electrons in the solar wind and in solar particle events have excellent properties for this application: they move rapidly, they remain tightly bound to their field lines, and they may arrive "scatter-free" even at low energies, and from deep in the solar atmosphere (Lin 1985)."[17]

First positrons

During solar flares “[s]everal radioactive nuclei that emit positrons are also produced; [which] slow down and annihilate in flight with the emission of two 511 keV photons or form positronium with the emission of either a three gamma continuum (each photon < 511 keV) or two 511 keV photons."[18]

First muons

First neutrinos

“The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources so far are the Sun and supernova SN1987A.”[19]

First gamma rays

"Gamma-ray bursts (GRBs) are flashes of gamma rays associated with extremely energetic explosions that have been observed in distant galaxies. They are the most luminous electromagnetic events known to occur in the universe. Bursts can last from ten milliseconds to several minutes, although a typical burst lasts 20–40 seconds. The initial burst is usually followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave and radio).[20]"[21]

First X-rays

The high temperature of the coronal cloud gives it unusual spectral features. These features have been traced to highly ionized atoms of elements such as iron which indicate a plasma's temperature in excess of 106 K (MK) and associated emission of X-rays.

A first astronomical X-ray source is usually considered to be the Sun. But, the surface of photosphere is too low in temperature to emit any X-rays.

First ultraviolets

Acquiring a suntan may be a student's first encounter with an astronomical ultraviolet source. This probably occurs at the secondary level.

"The color of a star, as determined by the peak frequency of the visible light, depends on the temperature of the star's outer layers, including its photosphere.[22]"[23] The effective temperature of the surface of the Sun's photosphere is 5,778 K.[24] That's a peak emittance wavelength of 501.5 nm (~0.5 eV) making the photosphere a primarily green radiation source. The temperature of the photosphere is way too cool to generate appreciable amounts of ultraviolet. In fact, the Sun's photosphere probably generates little or no ultraviolet rays.

"The solar transition region is a region of the Sun's atmosphere, between the chromosphere and corona[25]. It is visible from space using telescopes that can sense ultraviolet."[26]

"The transition region is visible in far-ultraviolet (FUV) images from the TRACE spacecraft, as a faint nimbus above the dark (in FUV) surface of the Sun and the corona. The nimbus also surrounds FUV-dark features such as solar prominences, which consist of condensed material that is suspended at coronal altitudes by the magnetic field."[26]

"This is the first astronomical source observed by the Extreme Ultraviolet Explorer (EUVE) in its calibration phase and is source EUVE 1257 + 220 in the EUVE".[27]

"Gyro-synchrotron emission from the material moving at semi-relativistic velocity in the jets is a mechanism which can produce UV radiation with properties consistent with all the observations. SS433 would then be the first astronomical source known to emit gyro-synchrotron radiation at non-radio frequencies."[28]

First opticals

Observations by NASA's Hubble Space Telescope reveal an increase in Neptune's brightness in the southern hemisphere. Credit: NASA, L. Sromovsky, and P. Fry (University of Wisconsin-Madison).

At right is a set of images from different years for Neptune. These images "show that Neptune's brightness has increased significantly since 1996. The rise is due to an increase in the amount of clouds observed in the planet's southern hemisphere. These increases may be due to seasonal changes caused by a variation in solar heating. Because Neptune's rotation axis is inclined 29 degrees to its orbital plane, it is subject to seasonal solar heating during its 164.8-year orbit of the Sun. This seasonal variation is 900 times smaller than experienced by Earth because Neptune is much farther from the Sun. The rate of seasonal change also is much slower because Neptune takes 165 years to orbit the Sun. So, springtime in the southern hemisphere will last for several decades! Remarkably, this is evidence that Neptune is responding to the weak radiation from the Sun. These images were taken in visible and near-infrared light by Hubble's Wide Field and Planetary Camera 2."[29]

First visuals

"According to Gruson and Brugsch the Egyptians were acquainted with, and even worshipped, the zodiacal light from the very earliest times, as a phenomenon visible throughout the East before sunrise and after sunset. It was described as a glowing sheaf or luminous pyramid perpendicular to the horizon in summer, and inclined more or less during the winter. Indeed the Egyptians represented the zodiacal light under the form of a triangle which sometimes stood upright and at other times was inclined."[30]

"[T]he notions of mantis [/Kaggen or Cagn ]and moon worship [by the Nharo, Bushmen, or San people] were European fabrications"[31]. "Cagn is said to have created the moon"[32]. But, if these gods are European fabrications either by the San people for the Europeans, or by the Europeans of the San, then it may be unlikely that /Kaggen created the Moon. Or, perhaps that the Mantis created the Moon but neither, nor the Sun, are or were worshipped by the San.

In Sumerian religion, Enlil was father of the moon god Nanna/Suen (in Akkadian, Sin).[33]

The Moon is one candidate for the first visual source. A source that may have been created within the memory of the hominins.

First violets

Violet photographs of the planet Venus taken in 1927 “recorded two nebulous bright streaks, or bands, running ... approximately at right angles to the terminator” that may be from the upper atmosphere.[34]

First blues

“The distribution of the high-latitude faint blue stars over Teff ... [shows] that the principal sequence [has] two gaps, at colors corresponding to log Teff ~ 4.11 (gap 1) and log Teff ~ 4.33 (gap 2). ... [T]he gaps [may be] a horizontal-branch phenomenon. ... [C]urrent theoretical concepts of the advanced evolution of Population II stars can explain the majority of blue halo stars.”[35]

First cyans

Both Luna 24 and Apollo 12 soil samples are from mare soils that reflect primarily cyan that is likely due to the presence of TiO2 in the soils.[36]

First greens

The iron (Fe XIV) green line has been observed in the plasma of the coronal cloud about the Sun.

"Carroll and McCormack (1972) in Dublin reported complex spectra in the blue and green wavelength regions of both FeH and FeD".[37]

First yellows

During the limb flares of December 18, 1956, a coronal line at 569.4 nm, a yellow line, occurred at 1822 UTC, 1900 UTC, undiminished up to 20,000 km above the solar limb, and at 2226 UTC, is identified as Ca XV.[38] "The coronal temperature was 4000000°."[38] "The December 18, 1956, flare appears to have been a violent condensation of material from a dense coronal cloud above an active region."[38]

"Since 1943, the spectrum of this star [Alshain (Beta Aquilae)] has served as one of the stable anchor points by which other stars are classified.[39]"[40] But, "The Atlas of Stellar Spectra was published fifty years ago by W.W. Morgan, P.C. Keenan, and E. Kellman(1943). Since then, there have been supplementary lists of standard stars and atlases published by Morgan and/or Keenan in 1953, 1973, 1976, and 1978. In these later publications, some of the types for the standard stars were modified in the light of better data."[39] In 1953, β Aql is listed as the standard star for G8 IV.[41] A G8 IV is a yellow (or orange-yellow) star.

First oranges

The variability of BD +50 961 (SY Persei, an orange star) is confirmed.[42]

"From col. iv, lines 2-3, we have Saturn in Pisces and Jupiter in Cancer on August 1. Tuckerman's tablesd show that this configuration occurred in A.D. 21-22, and thereafter at intervals of roughly 59 years."[43]

First reds

"Ideally all intrinsic colours should be found from unreddened stars. This is possible for dwarf and giant stars later than about A0 (Johnson, 1964) ... However, it cannot be used for stars of other spectral classes since they are all relatively infrequent in space, and generally reddened."[44]

First infrareds

"Spectra from the Voyager I IRIS experiment confirm the existence of enhanced infrared emission near Jupiter's north magnetic pole in March 1979."[45]

First submillimeters

"[F]or wavelengths between 0.35 and 0.45 mm ... the radiances can be matched by models which include NH3 ice particles which are between 30 and 100 µm in size, regardless of the scale height characterizing the cloud."[46]

First microwaves

First radars

First radios

"In 1955, Bernard Burke and Kenneth Franklin detected bursts of radio signals coming from Jupiter at 22.2 MHz.[47] The period of these bursts matched the rotation of the planet, and they were also able to use this information to refine the rotation rate. Radio bursts from Jupiter were found to come in two forms: long bursts (or L-bursts) lasting up to several seconds, and short bursts (or S-bursts) that had a duration of less than a hundredth of a second.[48]"[49]

"It would have been difficult to imagine the wonders that would later be revealed when Karl Jansky identified the first astronomical source of radio waves."[50]

First superluminals

"The existence of superluminal energy transfer has not been established so far, and one may ask why. There is the possibility that superluminal quanta just do not exist, the vacuum speed of light being the definitive upper bound. There is another explanation, the interaction of superluminal radiation with matter is very small, the quotient of tachyonic and electric fine-structure constants being q2/e2 ≈ 1.4 x 10-11 [5], and therefore superluminal quanta are hard to detect."[51]

"The very fast neon nova GK Persei rivalled the brightness of Vega at the peak of its outburst in 1901 (see Bode, O’Brien & Simpson 1994, and references therein). Early observations showed it to possess optical nebulosities on arcminute scales apparently expanding at super-light velocities and subsequently explained as light echoes (Kapteyn 1902). Indeed, it was the first astronomical source in which such motion was observed and one of only three novae where such an effect has been noted (the other two being V732 Sgr (Swope 1940) and V1974 Cyg (Casalegno et al. 2000) - see next section)."[4]

"The 1901 nova outburst was therefore the first of ultimately very many that this system will undergo."[4]

"The classical nova GK Persei ... has turned out to be the longest lived and most energetic among the classical novae and appears more like a supernova remnant (SNR) in miniature but evolving on human timescales."[9]

First plasmas

First gaseous sources

First liquids

First rocky sources

First hydrogen sources

Ions

Compounds

"HC5N is the second molecule, after HC3N, in terms of total number of lines detected in the millimeter spectrum of CRL 618. It is a linear molecule with a rotational constant of 1331.330 MHz and a dipole moment of 4.33 Debyes, first discovered in space by Little et al. (1978)."[52]

"On the other hand, HC7N was first discovered in space by Kroto et al. (1978)."[52]

The "gas shells surrounding the protoplanetary nebula CRL618, [have] the pure rotational lines of HC5N in its fundamental and the lowest 4 vibrationally excited states (first astronomical source in which vibrationally excited HC5N has been detected), and HC7N rotational lines in its fundamental vibrational state."[52]

Alloys

Atmospheres

Materials

Meteorites

Shelters

Spectroscopy

Spectrometers

Sun

Geography

History

Over the history of radiation astronomy a number of sources have been found. These are located on the celestial sphere using coordinate systems, including behind, in, on, or above the Earth.

Mathematics

Physics

Science

Technology

See also

References

  1. Ginger Lehrman and Ian B Hogue, Sarah Palmer, Cheryl Jennings, Celsa A Spina, Ann Wiegand, Alan L Landay, Robert W Coombs, Douglas D Richman, John W Mellors, John M Coffin, Ronald J Bosch, David M Margolis (August 13, 2005). "Depletion of latent HIV-1 infection in vivo: a proof-of-concept study". Lancet 366 (9485): 549-55. doi:10.1016/S0140-6736(05)67098-5. http://www.sciencedirect.com/science/article/pii/S0140673605670985. Retrieved 2012-05-09. 
  2. "Sky, In: Wikipedia". San Francisco, California: Wikimedia Foundation, Inc. 2012. Retrieved 2012-11-02. {{cite web}}: Unknown parameter |month= ignored (help)
  3. "constellation, In: Wiktionary". San Francisco, California: Wikimedia Foundation, Inc. 2012. Retrieved 2012-11-04. {{cite web}}: Unknown parameter |month= ignored (help)
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 M.F. Bode (February 2010). "The outbursts of classical and recurrent novae". Astronomische Nachrichten 331 (2): 160-8. doi:10.1002/asna.200911319. http://onlinelibrary.wiley.com/doi/10.1002/asna.200911319/abstract. Retrieved 2014-01-09. 
  5. H. M. Dyck and C. A. Beichman (November 15, 1974). "Observations of Infrared Polarization in the Orion Nebula". The Astrophysical Journal 194 (11): 57-64. doi:10.1086/153223. http://adsabs.harvard.edu/abs/1974ApJ...194...57D. Retrieved 2014-01-09. 
  6. Mu301 (October 24, 2008). "Comets". Wikiversity: 1. http://en.wikiversity.org/w/index.php?title=Comets&diff=360239&oldid=360188. Retrieved 2012-11-03. 
  7. "Diagram 2: the orbit of the Peekskill meteorite along with the orbits derived for several other meteorite falls". Uregina.ca. Retrieved 2011-09-16.
  8. "Meteoroid, In: Wikipedia". San Francisco, California: Wikimedia Foundation, Inc. 2012. Retrieved 2012-07-01. {{cite web}}: Unknown parameter |month= ignored (help)
  9. 9.0 9.1 M. F. Bode, T. J. O'Brien, and M. Simpson (January 1, 2004). "Echoes of an explosive past: Solving the mystery of the first superluminal source". The Astrophysical Journal 600 (1): L63. http://iopscience.iop.org/1538-4357/600/1/L63. Retrieved 2014-01-09. 
  10. 10.0 10.1 Daniele Fargion (April 2010). "UHECR besides CenA</sub>: Hints of galactic sources". Progress in Particle and Nuclear Physics 64 (2): 363-5. doi:10.1016/j.ppnp.2009.12.049. http://www.sciencedirect.com/science/article/pii/S0146641009001276. Retrieved 2014-01-09. 
  11. E. C. Roelof, D. G. Mitchell, D. J. Williams (1985). "Energetic neutral atoms (E ∼ 50 keV) from the ring current: IMP 7/8 and ISEE 1". Journal of Geophysical Research 90 (A11): 10,991-11,008. doi:10.1029/JA090iA11p10991. http://www.agu.org/pubs/crossref/1985/JA090iA11p10991.shtml. Retrieved 2012-08-12. 
  12. D. G. Mitchell, K. C. Hsieh, C. C. Curtis, D. C. Hamilton, H. D. Voes, E. C, Roelof, P. C:son-Brandt (2001). "Imaging two geomagnetic storms in energetic neutral atoms". Geophysical Research Letters 28 (6): 1151-4. doi:10.1029/2000GL012395. http://www.agu.org/pubs/crossref/2001/2000GL012395.shtml. Retrieved 2012-08-12. 
  13. 13.0 13.1 13.2 Karen C. Fox (2013). "A Major Step Forward in Explaining the Ribbon in Space Discovered by NASA's IBEX Mission". Greenbelt, MD USA: NASA's Goddard Space Flight Center. Retrieved 2013-02-06. {{cite web}}: Cite has empty unknown parameter: |pdf= (help); Unknown parameter |month= ignored (help)
  14. Lingenfelter RE, Flamm EJ, Canfield EH, Kellman S (September 1965). "High-Energy Solar Neutrons 2. Flux at the Earth". Journal of Geophysical Research 70 (17): 4087–95. doi:10.1029/JZ070i017p04087. 
  15. Charles H. Jackman, Richard D. McPeters, Gordon J. Labow, Eric L.Fleming, Cid J. Praderas, James M. Russell (August 2001). "Northern Hemisphere atmospheric effects due to the July 2000 solar proton event". Geophysical Research Letters 28 (15): 2883-6. http://scholar.googleusercontent.com/scholar?q=cache:025LLdtAU9EJ:scholar.google.com/+%22Solar+proton+event%22&hl=en&as_sdt=0,3. Retrieved 2011-11-24. 
  16. L. A. Rancitelli, R. W. Perkins, W. D. Felix, and N. A. Wogman (1971). "Erosion and mixing of the lunar surface from cosmogenic and primordial radio-nuclide measurements in Apollo 12 lunar samples". Proceedings of the Lunar Science Conference 2: 1757-72. http://adsabs.harvard.edu/full/1971LPSC....2.1757R. Retrieved 2012-06-08. 
  17. H. S. Hudson and A. B. Galvin (September 1997). A. Wilson. ed. Correlated Studies at Activity Maximum: the Sun and the Solar Wind, In: Correlated Phenomena at the Sun, in the Heliosphere and in Geospace. Noordwijk, The Netherlands: European Space Agency. pp. 275-82. ISBN 92-9092-660-0. 
  18. Gerald H. Share and Ronald J. Murphy (January 2004). Andrea K. Dupree, A. O. Benz. ed. Solar Gamma-Ray Line Spectroscopy – Physics of a Flaring Star, In: Stars as Suns: Activity, Evolution and Planets. San Francisco, CA: Astronomical Society of the Pacific. pp. 133-44. ISBN 158381163X. Bibcode: 2004IAUS..219..133S. 
  19. "Neutrino detector". Wikipedia (San Francisco, California: Wikimedia Foundation, Inc). May 23, 2012. http://en.wikipedia.org/wiki/Neutrino_detector. Retrieved 2012-06-08. 
  20. Vedrenne, G and Atteia, J.-L. (2009). Gamma-Ray Bursts: The brightest explosions in the Universe. Springer/Praxis Books. ISBN 978-3-540-39085-5. http://books.google.com/?id=jZHSdrvzz0gC&printsec=frontcover#v=onepage&q&f=false. 
  21. "Gamma-ray burst". Wikipedia (San Francisco, California: Wikimedia Foundation, Inc). September 3, 2012. http://en.wikipedia.org/wiki/Gamma-ray_burst. Retrieved 2012-09-17. 
  22. "The Colour of Stars". Australian Telescope Outreach and Education. Retrieved 2006-08-13.
  23. "Star, In: Wikipedia". San Francisco, California: Wikimedia Foundation, Inc. 2012. Retrieved 2012-06-26. {{cite web}}: Unknown parameter |month= ignored (help)
  24. David R. Williams (2004). "Sun Fact Sheet". Greenbelt, MD: NASA Goddard Space Flight Center. Retrieved 2011-12-20. {{cite web}}: Cite has empty unknown parameter: |pdf= (help); Unknown parameter |month= ignored (help)
  25. "The Transition Region". Solar Physics, NASA Marshall Space Flight Center. NASA.
  26. 26.0 26.1 "Solar transition region, In: Wikipedia". San Francisco, California: Wikimedia Foundation, Inc. 2012. Retrieved 2012-06-26. {{cite web}}: Unknown parameter |month= ignored (help)
  27. N. Brosch, E. Almoznino, E. M. Leibowitz, and H. Netzer and T. P. Sasseen, S. Bowyer, M. Lampton, and X. Wu (September 1, 1995). "A Study of Ultraviolet Objects near the North Galactic Pole with FAUST". The Astrophysical Journal 450 (09): 137-48. doi:10.1086/176125. http://adsabs.harvard.edu/abs/1995ApJ...450..137B. Retrieved 2014-01-09. 
  28. J.F. Dolan, P.T. Boyd, S. Fabrika, G. Valyavin, S. Tapia, M.J. Nelson, J.W. Percival, E.L. Robinson, G.W. van Citters, D.C. Taylor, M.J. Taylor (May 1996). "SS433 in the UV: Evidence for Gyro-Synchrotron Radiation?". Bulletin of the Astronomical Society 28 (2): 913. http://adsabs.harvard.edu/abs/1996BAAS...28..913D. Retrieved 2014-01-09. 
  29. Phil Davis (2009). "Brighter Neptune". National Aeronautics and Space Administration. Retrieved 2012-07-20. {{cite web}}: Cite has empty unknown parameter: |pdf= (help); Unknown parameter |month= ignored (help)
  30. M. E. Lefébure (November 1900). "The Zodiacal Light according to the Ancients". The Observatory, A Monthly Review of Astronomy 23 (298): 393-8. 
  31. Mathias Georg Guenther (1999). Tricksters and Trancers: Bushman Religion and Society. Bloomington, Indiana, USA: Indiana University Press. ISBN 0-253-33640-6. http://books.google.com/books?id=NtyI0b1CiDkC&source=gbs_navlinks_s. Retrieved 2012-11-06. 
  32. "Khoisan religion". Wikipedia (San Francisco, California: Wikimedia Foundation, Inc). August 9, 2012. http://en.wikipedia.org/wiki/Khoisan_religion. Retrieved 2012-11-05. 
  33. "Enlil, In: Wikipedia". San Francisco, California: Wikimedia Foundation, Inc. 2012. Retrieved 2012-11-05. {{cite web}}: Unknown parameter |month= ignored (help)
  34. W. H. Wright (August 1927). "Photographs of Venus made by Infra-red and by Violet Light". Publications of the Astronomical Society of the Pacific 39 (230): 220-1. doi:10.1086/123718. 
  35. E. B. Newell (August 1973). "The Evolutionary Status of the Blue Halo Stars". The Astrophysical Journal Supplement 26 (8): 37-81. doi:10.1086/190279. 
  36. Carle’ M. Pieters. Mare basalt types on the front side of the moon - A summary of spectral reflectance data, In: Lunar and Planetary Science Conference, 9th, Houston, Tex., March 13-17, 1978, Proceedings. 3. New York: Pergamon Press, Inc.. pp. 2825-49. Bibcode: 1978LPSC....9.2825P. 
  37. John G. Phillips, Sumner P. Davis, Bo Lindgren, and Walter J. Balfour (December 1987). "The near-infrared spectrum of the FeH molecule". The Astrophysical Journal Supplement Series 65 (12): 721-78. doi:10.1086/191241. 
  38. 38.0 38.1 38.2 Harold Zirin (March 1959). "Physical Conditions in Limb Flares and Active Prominences. II. a Remarkable Limb Flare, December 18, 1956". Astrophysical Journal 129 (3): 414-23. doi:10.1086/146633. 
  39. 39.0 39.1 R. F. Garrison (December 1993). "Anchor Points for the MK System of Spectral Classification". Bulletin of the American Astronomical Society 25: 1319. http://www.astro.utoronto.ca/~garrison/mkstds.html. Retrieved 2012-02-04. 
  40. "Beta Aquilae". Wikipedia (San Francisco, California: Wikimedia Foundation, Inc). August 2, 2012. http://en.wikipedia.org/wiki/Beta_Aquilae. Retrieved 2012-08-13. 
  41. H. L. Johnson and W. W. Morgan (May 1953). "Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas". The Astrophysical Journal 117 (3): 313-52. 
  42. T. W. Backhouse (July 1899). "Confirmed or New Variable Stars". The Observatory 22 (281): 275-6. 
  43. Alexander Jones (1994). "An Astronomical Ephemeris for A.D. 140:P. Harris I.60". Zeitschrift für Papyrologie und Epigraphik 100: 59-63. http://www.jstor.org/stable/10.2307/20189006. Retrieved 2012-08-20. 
  44. M. Pim FitzGerald (February 1970). "The Intrinsic Colours of Stars and Two-Colour Reddening Lines". Astronomy and Astrophysics 4 (2): 234-43. 
  45. Sang J. Kim, John Caldwell, A.R. Rivolo, R. Wagener, Glenn S. Orton (November 1985). "Infrared polar brightening on Jupiter. III - Spectrometry from the Voyager 1 IRIS experiment". Icarus 64 (2): 233-48. doi:10.1016/0019-1035(85)90088-0. http://www.sciencedirect.com/science/article/pii/0019103585900880. Retrieved 2012-07-09. 
  46. M.J. Griffin, P.A.R. Ade, G.S. Orton, E.I. Robson, W.K. Gear, I.G. Nolt, J.V. Radostitz (February-March 1986). "Submillimeter and millimeter observations of Jupiter". Icarus 65 (2-3): 244-56. doi:10.1016/0019-1035(86)90137-5. http://www.sciencedirect.com/science/article/pii/0019103586901375. Retrieved 2012-08-04. 
  47. Linda T. Elkins-Tanton (2006). Jupiter and Saturn. New York: Chelsea House. ISBN 0-8160-5196-8. 
  48. Weintraub, Rachel A. (September 26, 2005). "How One Night in a Field Changed Astronomy". NASA. Retrieved 2007-02-18.
  49. "Jupiter, In: Wikipedia". San Francisco, California: Wikimedia Foundation, Inc. 2012. Retrieved 2012-09-27. {{cite web}}: Unknown parameter |month= ignored (help)
  50. Eric D. Black, Ryan N. Gutenkunst (April 2003). "An introduction to signal extraction in interferometric gravitational wave detectors". American Journal of Physics 71 (4): 365-78. doi:10.1119/1.1531578. http://link.aip.org/link/?ajp/71/365/1. Retrieved 2014-01-09. 
  51. R Tomaschitz (October 2010). "Superluminal spectral densities of ultra-relativistic electrons in intense electromagnetic wave fields". Applied Physics B Lasers and Optics 101 (1-2): 143-64. doi:10.1007/s00340-010-4182-8. http://www.springerlink.com/index/W575540733147645.pdf. Retrieved 2012-03-21. 
  52. 52.0 52.1 52.2 Juan R. Pardo, José Cernicharo, and Javier R. Goicoechea (July 2005). "Observational evidence of the formation of cyanopolyynes in CRL 618 through the polymerization of HCN". The Astrophysical Journal 628 (1): 275-82. doi:10.1086/430774. http://adsabs.harvard.edu/abs/2005ApJ...628..275P. Retrieved 2014-01-09. 

Further reading

External links