Chemicals/Nitrogens

From Wikiversity
Jump to: navigation, search
Liquid nitrogen can be poured. Credit: Robin Müller.

On the right liquid nitrogen is shown being poured.

Nitrogen is element number seven based on the number of protons in its nucleus.

Nitrogens is a lecture on the general nature and specific characteristics of various natural and hominin-made nitrogens. It is an offering from the school of chemistry.

Emissions[edit]

The spectrum shows the lines in the visible due to emission from elemental nitrogen. Credit:Kurgus.
Spectrum = gas discharge tube filled with nitrogen N2, used with 1.8 kV, 18 mA, 35 kHz. ≈8" length. Credit: Alchemist-hp.

A nitrogen green emission line occurs in plasmas at 566.934 nm from N VIII.[1]

Nitrogen has an emission line at 658.4 nm.

Nitrogen has two emission lines that occur in plasmas at 455.368 and 455.545 nm from N VII.[1]

There is an "(0,2) vibrational component of the B-x electronic transition of N2(+) at 470.9 nm."[2]

Nitrogen has an emission line that occurs in plasmas at 388.678 nm from N VII.[1]

As seen in its spectrum above, nitrogen has many emission lines in the violet.

Positrons[edit]

"Isotopes which undergo this decay and thereby emit positrons include carbon-11, potassium-40, nitrogen-13, oxygen-15, fluorine-18, and iodine-121. As an example, the following equation describes the beta plus decay of carbon-11 to boron-11, emitting a positron and a neutrino:"[3]

'"`UNIQ--postMath-00000001-QINU`"'

Muons[edit]

"The [cosmic-ray] shower can be observed by: i) sampling the electromagnetic and hadronic components when they reach the ground with an array of particle detectors such as scintillators, ii) detecting the fluorescent light emitted by atmospheric nitrogen excited by the passage of the shower particles, iii) detecting the Cerenkov light emitted by the large number of particles at shower maximum, and iv) detecting muons and neutrinos underground."[4]

Neutrinos[edit]

"These “atmospheric neutrinos” come from the decay of pions and kaons produced by the collisions of cosmic-ray particles with nitrogen and oxygen in the atmosphere."[5]

Ultraviolets[edit]

Several emission lines occur in plasmas at 347.872, 348.30, and 348.493 nm from N IV and 252.255, 344.211, and 388.678 nm from N VII.[1]

"Molecular nitrogen and nitrogen compounds have been detected in interstellar space by astronomers using the Far Ultraviolet Spectroscopic Explorer.[6]"[7]

Visuals[edit]

"[T]he 5198-, 5201-A lines of nitrogen [occur] in the [Earth's] nightglow."[8]

Violets[edit]

The aurora borealis imaged shows blue, violet, and purple colors. Credit: Ragnar Sigurdsson.
This multicolored aurora has a strong violet band above the pink band. Credit: Black Swamp Storm Intercept Team.

"Auroras are known to be generated by beams of electrons which are accelerated along Earth's magnetic field lines. The fast-moving electrons collide with atoms in the ionosphere at altitudes of between 100 to 600 km. This interaction with oxygen atoms results in a green or, more rarely, red glow in the night sky, while nitrogen atoms yield blue and purple colours."[9]

The aurora borealis imaged on the right shows blue, violet, and purple colors with the Milky Way in the background.

The second aurora on the right contains an intense violet band above the pink band.

Blues[edit]

This is a blue aurora borealis that occurred over Iceland. Credit: Daniel Nelson.
The image contains an extensive blue aurora over Canada. Credit: Unknown, or unstated.
This is a blue aurora with some purple at the lower left. Credit: Micha.

"When the charged particles from the Sun penetrate Earth's magnetic shield, they are channelled downwards along the magnetic field lines until they strike atoms of gas high in the atmosphere. Like a giant fluorescent neon lamp, the interaction with excited oxygen atoms generates a green or, more rarely, red glow in the night sky, while excited nitrogen atoms yield blue and purple colours."[10]

There is an "(0,2) vibrational component of the B-x electronic transition of N2(+) at 470.9 nm."[2]

The image on the right shows blue aurora borealis that occurred over Iceland.

The second image down on the right shows an extensive blue aurora above the green over Canada.

The image on the left shows an extensive blue aurora.

Cyans[edit]

M2-9 is a striking example of a "butterfly" or a bipolar planetary nebula. Credit: Bruce Balick (University of Washington), Vincent Icke (Leiden University, The Netherlands), Garrelt Mellema (Stockholm University), and NASA.

Nitrogen appears to have lines near to the cyan.

"M2-9 [in the image at right] is a striking example of a "butterfly" or a bipolar planetary nebula. Another more revealing name might be the "Twin Jet Nebula." If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. Ground-based studies have shown that the nebula's size increases with time, suggesting that the stellar outburst that formed the lobes occurred just 1,200 years ago."[11]

"The central star in M2-9 is known to be one of a very close pair which orbit one another at perilously close distances. It is even possible that one star is being engulfed by the other. Astronomers suspect the gravity of one star pulls weakly bound gas from the surface of the other and flings it into a thin, dense disk which surrounds both stars and extends well into space."[11]

"The disk can actually be seen in shorter exposure images obtained with the Hubble telescope. It measures approximately 10 times the diameter of Pluto's orbit. Models of the type that are used to design jet engines ("hydrodynamics") show that such a disk can successfully account for the jet-exhaust-like appearance of M2-9. The high-speed wind from one of the stars rams into the surrounding disk, which serves as a nozzle. The wind is deflected in a perpendicular direction and forms the pair of jets that we see in the nebula's image. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds."[11]

"M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue."[11]

Yellows[edit]

Nitrogen has a yellow forbidden line, specifically N II at 575.5 nm, that may be used to indicate nitrogen abundances and contribute to nitrogen/oxygen (N/O) abundance gradients. Surveys of H II regions in spiral galaxies have suggested that N/O abundance ratios increase from outer-arm nebulae to inner-arm nebulae.[12] "Electron temperatures are generally derived from the ratio of auroral to nebular lines in [O III] or [N II]."[13] "[B]ecause of the proximity of strong night-sky lines at λ4358 and λλ5770, 5791, the auroral lines of [O III] λ4363 and [N II] λ5755 are often contaminated."[13]

Oranges[edit]

Nitrogen has a weak line in the orange.

Nucleosynthesis[edit]

The carbon-burning process is a set of nuclear reactions that may require high temperatures (> 5×108 K or 50 keV) and densities (> 3×109 kg/m3).[14]

CNO-I[edit]

This shows an overview of the CNO-I Cycle. Credit: Borb.

The principal reactions are:[15]"

12
6
C
 + 1
1
H
 → 13
7
N
 + γ   + 1.95 MeV

13
7
N
   → 13
6
C
 + e+ + ν
e
 + 1.20 MeV (half-life of 9.965 minutes[16]), or 12C(p,γ)13N.

13
6
C
 + 1
1
H
 → 14
7
N
 + γ   + 7.54 MeV

14
7
N
 + 1
1
H
 → 15
8
O
 + γ   + 7.35 MeV

15
8
O
   → 15
7
N
 + e+
 + ν
e
 + 1.73&bsp;MeV (half-life of 122.24 seconds[16])

15
7
N
 + 1
1
H
 → 12
6
C
 + 4
2
He
 + 4.96 MeV:[17]

CNO-II[edit]

15
7
N
 + 1
1
H
 → 16
8
O
 + γ   + 12.13 MeV

16
8
O
 + 1
1
H
 → 17
9
F
 + γ   + 0.60 MeV

17
9
F
   → 17
8
O
 + e+
 + ν
e
 + 2.76 MeV (half-life of 64.49 seconds)

17
8
O
 + 1
1
H
 → 14
7
N
 + 4
2
He
 + 1.19 MeV

14
7
N
 + 1
1
H
 → 15
8
O
 + γ   + 7.35 MeV

15
8
O
   → 15
7
N
 + e+
 + ν
e
 + 2.75 MeV (half-life of 122.24 seconds)

CNO-III[edit]

17
8
O
 + 1
1
H
 → 18
9
F
 + γ   + 5.61 MeV

18
9
F
   → 18
8
O
 + e+
 + ν
e
 + 1.656 MeV (half-life of 109.771 minutes)

18
8
O
 + 1
1
H
 → 15
7
N
 + 4
2
He
 + 3.98 MeV

15
7
N
 + 1
1
H
 → 16
8
O
 + γ   + 12.13 MeV

16
8
O
 + 1
1
H
 → 17
9
F
 + γ   + 0.60 MeV

17
9
F
   → 17
8
O
 + e+
 + ν
e
 + 2.76 MeV (half-life of 64.49 seconds)

CNO-IV[edit]

A proton reacts with a nucleus causing release of an alpha particle. Credit: Michalsmid.

These reactions may occur in massive stars.

19
9
F
 + 1
1
H
 → 16
8
O
 + 4
2
He
   + 8.114 MeV

16
8
O
 + 1
1
H
 → 17
9
F
 + γ   + 0.60 MeV

17
9
F
   → 17
8
O
 + e+
 + ν
e
 + 2.76 MeV (half-life of 64.49 seconds)

17
8
O
 + 1
1
H
 → 18
9
F
 + γ   + 5.61 MeV

18
9
F
   → 18
8
O
 + e+
 + ν
e
 + 1.656 MeV (half-life of 109.771 minutes)

18
8
O
 + 1
1
H
 → 19
9
F
 + γ   + 7.994 MeV

HCNO-I[edit]

These are the hot CNO cycles reactions with conditions of higher temperature as have been found in novae and X-ray bursts.

When the rate of proton captures exceeds the rate of beta-decay, the burning conforms to the proton drip line. A radioactive species captures a proton before it can beta decay.

12
6
C
 + 1
1
H
 → 13
7
N
 + γ   + 1.95 MeV

13
7
N
 + 1
1
H
 → 14
8
O
 + γ   + 4.63 MeV

14
8
O
   → 14
7
N
 + e+
 + ν
e
 + 5.14 MeV (half-life of 70.641 seconds)

14
7
N
 + 1
1
H
 → 15
8
O
 + γ   + 7.35 MeV

15
8
O
   → 15
7
N
 + e+
 + ν
e
 + 2.75 MeV (half-life of 122.24 seconds)

15
7
N
 + 1
1
H
 → 12
6
C
 + 4
2
He
  + 4.96 MeV

HCNO-II[edit]

15
7
N
 + 1
1
H
 → 16
8
O
 + γ   + 12.13 MeV

16
8
O
 + 1
1
H
 → 17
9
F
 + γ   + 0.60 MeV

17
9
F
 + 1
1
H
 → 18
10
Ne
 + γ   + 3.92 MeV

18
10
Ne
   → 18
9
F
 + e+
 + ν
e
 + 4.44 MeV (half-life of 1.672 seconds)

18
9
F
 + 1
1
H
 → 15
8
O
 + 4
2
He
 + 2.88 MeV

15
8
O
   → 15
7
N
 + e+
 + ν
e
 + 2.75 MeV (half-life of 122.24 seconds)

HCNO-III[edit]

18
9
F
 + 1
1
H
 → 19
10
Ne
 + γ   + 6.41 MeV

19
10
Ne
   → 19
9
F
 + e+
 + ν
e
 + 3.32 MeV (half-life of 17.22 seconds)

19
9
F
 + 1
1
H
 → 16
8
O
 + 4
2
He
  + 8.11 MeV

16
8
O
 + 1
1
H
 → 17
9
F
 + γ   + 0.60 MeV

17
9
F
 + 1
1
H
 → 18
10
Ne
 + γ   + 3.92 MeV

18
10
Ne
   → 18
9
F
 + e+
 + ν
e
 + 4.44 MeV (half-life of 1.672 seconds)

Plasma objects[edit]

Representation of upper-atmospheric lightning and electrical-discharge phenomena are displayed. Credit: .

"Blue jets differ from sprites in that they project from the top of the cumulonimbus above a thunderstorm, typically in a narrow cone, to the lowest levels of the ionosphere 40 to 50 km (25 to 30 miles) above the earth. In addition, whereas red sprites tend to be associated with significant lightning strikes, blue jets do not appear to be directly triggered by lightning (they do, however, appear to relate to strong hail activity in thunderstorms).[18] They are also brighter than sprites and, as implied by their name, are blue in color. The color is believed to be due to a set of blue and near-ultraviolet emission lines from neutral and ionized molecular nitrogen."[19]

Gases[edit]

Main source: Gases

"Molecular nitrogen (N2) [is] a colorless, odorless gas at room temperature."[20]

Liquids[edit]

Main source: Liquids

At the top of this page, liquid diatomic nitrogen (N2) is being poured.

Titan[edit]

Main source: Titan
This is a natural color image of Titan. Credit: NASA/JPL/Space Science Institute.

"The atmosphere of Titan is largely composed of nitrogen; minor components lead to the formation of methane and ethane clouds and nitrogen-rich organic smog."[21]

Nebulas[edit]

The red light depicts nitrogen emission ([N II] 658.4 nm); green, hydrogen (H-alpha, 6563A); and blue, oxygen (5007A). These are "cometary knots" in the Helix nebula. Credit: NASA Robert O Dell Kerry P. Handron Rice University, Houston Texas.
This NASA Hubble Space Telescope image shows one of the most complex planetary nebulae ever seen, NGC 6543, nicknamed the "Cat's Eye Nebula." Credit: NASA J.P.Harrington and K.J.Borkowski University of Maryland.

At right is an image gaseous objects ("cometary knots") discovered in the thousands. These knots are imaged with the Hubble Space Telescope while exploring the Helix nebula, the closest planetary nebula to Earth at 450 light-years away in the constellation Aquarius. Although ground-based telescopes have revealed such objects, astronomers have never seen so many of them. The most visible knots all lie along the inner edge of the doomed star's ring, trillions of miles away from the star's nucleus. Although these gaseous knots appear small, they're actually huge. Each gaseous head is at least twice the size of our solar system; each tail stretches for 100 billion miles, about 1,000 times the distance between the Earth and the Sun. The image was taken in August 1994 with Hubble's Wide Field Planetary Camera 2. The red light depicts nitrogen emission ([NII] 658.4 nm).

The second image at right is a color picture, taken with the Wide Field Planetary Camera-2. It is a composite of three images taken at different wavelengths. (red, hydrogen-alpha; blue, neutral oxygen, 630.0 nm; green, ionized nitrogen, 658.4 nm). This NASA Hubble Space Telescope image shows one of the most complex planetary nebulae ever seen, NGC 6543, nicknamed the "Cat's Eye Nebula." The image was taken on September 18, 1994. NGC 6543 is 3,000 light-years away in the northern constellation Draco. The term planetary nebula is a misnomer; dying stars create these cocoons when they lose outer layers of gas.

Milky Way[edit]

Main source: Milky Way

"The nitrogen abundance appears to increase with decreasing galactocentric distance. ... A least-squares solution weighting the points equally gives a magnitude for the gradient d(log N/H)/dr = -0.10 ± 0.03 kpc-1."[13] "The ratio N/O clearly increases with decreasing R. A least-squares fit to the data ... gives d(log N/O)/dr = -0.06 ± 0.02 kpc-1."[13]

Technology[edit]

Main source: Technology
The surface of a MEMS device is cleaned with bright, blue oxygen plasma in a plasma etcher to rid it of carbon contaminants. (100mTorr, 50W RF) Credit: .

"Plasma cleaning involves the removal of impurities and contaminants from surfaces through the use of an energetic plasma created from gaseous species. Gases such as argon and oxygen, as well as mixtures such as air and hydrogen/nitrogen are used. The plasma is created by using high frequency voltages (typically kHz to >MHz) to ionise the low pressure gas (typically around 1/1000 atmospheric pressure), although atmospheric pressure plasmas are now also common."[22]

Hypotheses[edit]

Main source: Hypotheses
  1. To form a nitrogen plasma, diatomic molecular nitrogen gas must be dissociated into monatomic nitrogen gas, then one or more electrons must be either added or taken away.

See also[edit]

References[edit]

  1. 1.0 1.1 1.2 1.3 K. J. McCarthy, A. Baciero, B. Zurro, and TJ-II Team (June 12-16 2000). Impurity Behaviour Studies in the TJ-II Stellarator, In: 27th EPS Conference on Contr. Fusion and Plasma Phys.. 24B. Budapest: ECA. pp. 1244-7. http://crpppc42.epfl.ch/Buda/pdf/p3_116.pdf. Retrieved 2013-01-20. 
  2. 2.0 2.1 C. B. Collins, J. M. Carroll, K. N. Taylor, and F. W. Lee (October 1, 1978). "A regenerative power amplifier operating on the blue-green line of the nitrogen ion laser". Applied Physics Letters 33 (7): 624-6. doi:10.1063/1.90484. 
  3. Lua error in Module:Citation/CS1 at line 3505: bad argument #1 to 'pairs' (table expected, got nil).
  4. Francis Halzen and Dan Hooper (June 12, 2002). "High-energy neutrino astronomy: the cosmic ray connection". Reports on Progress in Physics 65 (7): 1025-107. doi:10.1088/0034-4885/65/7/201. http://iopscience.iop.org/0034-4885/65/7/201. Retrieved 2014-02-08. 
  5. Francis Halzen and Spencer R. Klein (August 2010). "IceCube: An instrument for neutrino astronomy". Review of Scientific Instruments 81 (8): 081101 - 081101-24. doi:10.1063/1.3480478. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5574379. Retrieved 2014-02-08. 
  6. Meyer, Daved M.; Cardelli, Jason A.; Sofia, Ulysses J. (1997). "Abundance of Interstellar Nitrogen". The Astrophysical Journal 490: L103–6. doi:10.1086/311023. 
  7. Lua error in Module:Citation/CS1 at line 3505: bad argument #1 to 'pairs' (table expected, got nil).
  8. D. R. Bates (October 1978). "Forbidden oxygen and nitrogen lines in the nightglow". Planetary and Space Science 26 (10): 897-912. doi:10.1016/0032-0633(78)90073-9. http://www.sciencedirect.com/science/article/pii/0032063378900739. Retrieved 2013-01-16. 
  9. Lua error in Module:Citation/CS1 at line 3505: bad argument #1 to 'pairs' (table expected, got nil).
  10. Lua error in Module:Citation/CS1 at line 3505: bad argument #1 to 'pairs' (table expected, got nil).
  11. 11.0 11.1 11.2 11.3 Lua error in Module:Citation/CS1 at line 3505: bad argument #1 to 'pairs' (table expected, got nil).
  12. C. L. Searle (1971). The Astrophysical Journal 168: 327. 
  13. 13.0 13.1 13.2 13.3 S. A. Hawley (September 1, 1978). "The chemical composition of galactic and extragalactic H II regions". The Astrophysical Journal 224 (9): 417-36. doi:10.1086/156389. 
  14. Sean G. Ryan, Andrew J. Norton (2010). Stellar Evolution and Nucleosynthesis. Cambridge University Press. p. 135. ISBN 978-0-521-13320-3. http://books.google.com/?id=PE4yGiU-JyEC#v=onepage&f=false. 
  15. W. H. Camiel, C. Doom de Loore (1992). "Structure and evolution of single and binary stars". In Camiel W. H. de Loore. Volume 179 of Astrophysics and space science library. Springer. pp. 95–97. ISBN 978-0-7923-1768-5. http://books.google.com/?id=LJgNIi0vkeYC#v=snippet&f=false. 
  16. 16.0 16.1 Principles and Perspectives in Cosmochemistry, Springer, 2010, ISBN 9783642103681, page 233
  17. Krane, K. S. (1988). Introductory Nuclear Physics. John Wiley & Sons. p. 537. ISBN 0-471-80553-X. 
  18. "Fractal Models of Blue Jets, Blue Starters Show Similarity, Differences to Red Sprites". 
  19. Lua error in Module:Citation/CS1 at line 3505: bad argument #1 to 'pairs' (table expected, got nil).
  20. Lua error in Module:Citation/CS1 at line 3505: bad argument #1 to 'pairs' (table expected, got nil).
  21. Lua error in Module:Citation/CS1 at line 3505: bad argument #1 to 'pairs' (table expected, got nil).
  22. Lua error in Module:Citation/CS1 at line 3505: bad argument #1 to 'pairs' (table expected, got nil).

External links[edit]

{{Chemistry resources}}

38254-new folder-12.svg Type classification: this is an article resource.