Fundamentals of chemistry

From Wikiversity
Jump to: navigation, search
Nuvola apps edu science.svg Subject classification: this is a chemistry resource .

< Wikiversity:School of Chemistry

The fundamentals of Chemistry is an introduction to the Periodic Table, stoichiometry, chemical states, equilibria, acid/bases, oxidation/reduction reaction, kinetics, bonding, among other parts of chemistry.

Periodic Table of Elements[edit]

This box represents Hydrogen on the Periodic table

Each chemical element in the universe has unique properties which distinguish it from all of the other chemical elements. Though each is unique, the elements can be still grouped by their commonalities in a useful and meaningful way. The periodic table groups the elements by properties. For the History of the Periodic Table, check out Early Chemistry or Wikipedia's History of the Periodic Table.

The Periodic Table is available here: Periodic Table on Wikimedia Commons and explanations will be based on this table. A good idea is to have a printed hard copy of the periodic table.

Each element has its own box and these boxes make up groups and rows. There are eighteen groups (or families or columns) on the periodic table. Each one represents how many electrons are attached to the elements and correlate to how many valence electrons are present. Electrons are negatively charged subatomic particles that revolve around the nucleus of the element. Valence electrons are electrons that are on the very outside of the atom. There are seven periods (or horizontal rows) that describe electron shells, but more details on electron shells will be discussed in advanced pages.

Traditionally the boxes have certain informative parts about the element. Let's look at hydrogen's box. The "1" in the top corner is the atomic number, which deals with how many protons, or positive charges, are in the atom. The "H" is the symbol for Hydrogen. All the elements get a one or two letter symbol (there are a couple of exceptions with undeclared elements). The number at the bottom is the atomic weight or atomic mass. 1.00794 represents how many grams are in each mole (6.022×1023 entities) of hydrogen. The atomic mass is a very important part of chemistry and has many applications throughout.

There are eight distinct groups that need to be discussed. The first two groups (1A and 2A) as well as the six on the very right (3A-8A). These are called representative elements. Group 1A are alkali metals (except Hydrogen which is a non-metal) and Group 2A are alkaline earth metals. Group 3A through 8A are mixed in properties, but there are specific trends.


Stoichiometry is used to calculate quantitative measurements within chemical reactions. In order for stoichiometric relationships to work, one must consider the law of conservation of mass, the law of definite proportions, and the law of multiple proportions. One must remember that mass or matter is neither created nor destroyed.

Here is an example of how stoichiometry is used to balance equations. Ethyne is added to oxygen gas to create carbon dioxide and water. This reaction could be written as follows.

Unbalanced equation
C_2H_2(g) + O_2(g) \to CO_2(g) + H_2O(l)

However, the above equation is not balanced.

  • On the left side there are two Carbon atoms (C), two Hydrogen atoms (H) and two Oxygen atoms.
  • On the right there is one Carbon atom, three Oxygen atoms, and two Hydrogen atoms.

In order to balance the equation correctly, a number must be added to the front of each molecule. These numbers are called coefficients.

Correctly balanced equation
2C_2H_2(g) + 5O_2(g) \to 4CO_2(g) + 2 H_2O(l)

As can be seen, the subscripts were not touched, only whole numbers were added to the front of all the formulas, as needed. The coefficients may be fractions, but for clarity and simplicity whole numbers are generally used.

It would not be correct to balance it by changing the subscript numbers.

Incorrectly balanced equation
C_2H_2(g) + {\color{Red}O_3(g)}\ \to {\color{Red}C_2O_2(g)} + H_2O(l)

By changing the subscripts you are changing the chemicals involved in the reaction. In the above, O_3 is ozone not normal oxygen and C_2O_2 is not a stable compound.

The (g) and (l) represent the chemical's physical state; the "l" stands for liquid, the "g" stands for gas, an "s" would stand for solid, and an "aq" would stand for aqueous. Plasma can also exist, which is an ionized gas with special properties.

Chemical States[edit]

There are five states of matter, plasma being the most common in the known universe. The other three common states are gas, liquid and solid, from least to most dense. A fifth, the Bose-Einstein condensate, can only exist in temperatures approaching absolute zero. It has limited applications in chemistry.

Gases are made up of atoms and/or molecules that are freely moving and therefore have no definite shape. They morph uniformly to the shape of the container that they are in. If the container is not sealed, then the gas can move out. Therefore the volume of the gas is reliant on the temperature and/or pressure throughout the gas or environment. This is observed using the ideal gas laws, which are discussed later.

An important piece of information to know is what an aqueous solution is also. Aqueous solutions are not technically chemical states, but they appear often enough when dealing with stoichiometry and chemistry in general that they should be mentioned.


The potential of hydrogen or pH (pronounced /piː.eitʃ/) is a measure of the acidity or alkalinity of a solution, numerically equal to 7 for neutral solutions, increasing pH with rising alkalinity and decreasing pH with more acidity. The pH scale commonly in use ranges from 0 to 14.

An alkali is sometimes called a "base".

Representative pH values
Substance pH
Battery acid
Gastric acid
1.5 – 2.0
Lemon juice
Orange or apple juice
Acid Rain
Tea or healthy skin
Pure water
Healthy human saliva
6.5 – 7.4
7.34 – 7.45
Sea water
Hand soap
9.0 – 10.0
Household ammonia
Household lye

Mathematically, calculate pH using the following equation:

pH = - log [H^+]

Mathematically, calculate pOH using the following equation:

pOH = - log [OH^-]

Combining (adding) the results of pH with pOH should equal fourteen (14).

pH + pOH = 14


Characteristics of acids:

  • Aqueous acids can turn blue litmus towards red.
  • React with bases and certain metals to form salts.
  • Arrhenius' definition of acid: Yields hydrogen ions when dissolved in water.
  • The Lewis definition of an acid: Can accept a pair of electrons to form a covalent bond.
  • Brønsted-Lowry acid definition: A species that can lose or "donate" a hydrogen ion
  • Can have a sour taste.
  • Can give one or more than one protons (or simply, H+)
  • Electrolytes, yet usually are not ionic compounds


Characteristics of bases:

  • Aqueous bases (alkalis) can turn red litmus towards blue.
  • React with acids to form salts.
  • Arrehenius definition of base: produce OH ions when dissolved in water.
  • Lewis definition of Base: can donate a pair of electrons to form a covalent bond with an acid
  • Brønsted-Lowry base definition: A species that can gain or "accept" a hydrogen ion
  • Can have a bitter taste.
  • Can accept one or more than one protons (or simpler H+)
  • Conduct electricity

The difference between bases and alkalis is that alkalis dissolve in water and are considered basic salts of alkaline metals. An example of a base that is not an alkali is ammonia (NH3).


Properties of alkalies and acids

See also[edit]