Portal:Radiation astronomy
Radiation astronomy is astronomy applied to the various extraterrestrial sources of radiation, especially at night. It is also conducted above the Earth's atmosphere and at locations away from the Earth, by satellites and space probes, as a part of explorational (or exploratory) radiation astronomy.
Seeing the Sun and feeling the warmth of its rays is probably a student's first encounter with an astronomical radiation source. This will happen from a very early age, but a first understanding of the concepts of radiation may occur at a secondary educational level.
Radiation is all around us on top of the Earth's crust, regolith, and soil, where we live. The study of radiation, including radiation astronomy, usually intensifies at the university undergraduate level.
And, generally, radiation becomes hazardous, when a student embarks on graduate study.
Cautionary speculation may be introduced unexpectedly to stimulate the imagination and open a small crack in a few doors that may appear closed at present. As such, this learning resource incorporates some state-of-the-art results from the scholarly literature.
The laboratories of radiation astronomy are limited to the radiation observatories themselves and the computers and other instruments (sometimes off site) used to analyze the results.
Radiation astronomy entities
Radiation astronomy entities, radiation entities, are any astronomical persons or things that have separate and distinct existences in empirical, objective or conceptual reality.
Some of them, like the astronomers of today, or at any time in the past, are relatively known. But there are many entities that are far less known or understood, such as the observers of ancient times who suggested that deities occupied the sky or the heavens. Likewise, these alleged deities may be entities, or perhaps something a whole lot less.
Astronomical X-ray entities are often discriminated further into sources or objects when more information becomes available, including that from other radiation astronomies.
A researcher who turns on an X-ray generator to study the X-ray emissions in a laboratory so as to understand an apparent astronomical X-ray source is an astronomical X-ray entity. So is one who writes an article about such efforts or a computer simulation to possibly represent such a source.
"The X-ray luminosity of the dominant group [an entity] is an order of magnitude fainter than that of the X-ray jet."[1]
References
- ↑ A. Finoguenov, M.G. Watson, M. Tanaka, C.Simpson, M. Cirasuolo, J.S. Dunlop, J.A. Peacock, D. Farrah, M. Akiyama, Y. Ueda, V. Smolčič, G. Stewart, S. Rawlings, C.vanBreukelen, O. Almaini, L.Clewley, D.G. Bonfield, M.J. Jarvis, J.M. Barr, S. Foucaud, R.J. McLure, K. Sekiguchi, E. Egami (April 2010). "X-ray groups and clusters of galaxies in the Subaru-XMM Deep Field". Monthly Notices of the Royal Astronomical Society 403 (4): 2063-76. doi:10.1111/j.1365-2966.2010.16256.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2010.16256.x/full. Retrieved 2011-12-09.
Theoretical radiation astronomy
At its simplest theoretical radiation astronomy is the definition of terms to be applied to astronomical radiation phenomena.
Def. a theory of the science of the biological, chemical, physical, and logical laws (or principles) with respect to any natural radiation source in the sky especially at night is called theoretical radiation astronomy.
Exploratory theory is the playtime activity that leads to discoveries which better our world. In the radiation physics laboratories here on Earth, the emission, reflection, transmission, absorption, and fluorescence of radiation is studied and laws relative to sources are proven.
A principle is a law or rule that has to be, or usually is to be followed, or can be desirably followed, or is an inevitable consequence of something, such as the laws observed in nature or the way that a system is constructed. The principles of such a system are understood by its users as the essential characteristics of the system, or reflecting system's designed purpose, and the effective operation or use of which would be impossible if any one of the principles was to be ignored.[1]
Radiation astronomy consists of three fundamental parts:
- derivation of logical laws with respect to incoming radiation,
- natural radiation sources outside the Earth, and
- the sky and associated realms with respect to radiation.
Def. a spontaneous emission of an α ray, β ray, or γ ray by the disintegration of an atomic nucleus is called radioactivity.[2]
References
- ↑ Guido Alpa (1994). "General Principles of Law". Annual Survey of International & Comparative Law 1: 1. http://heinonlinebackup.com/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/ansurintcl1§ion=4. Retrieved 2012-04-29.
- ↑ Philip B. Gove, ed (1963). Webster's Seventh New Collegiate Dictionary. Springfield, Massachusetts: G. & C. Merriam Company. pp. 1221.
Continua
Lyc photon or Ly continuum photon or Lyman continuum photon are a kind of photon emitted from stars. Hydrogen is ionized by absorption of Lyc photons. Lyc photons are in the ultraviolet portion of the electromagnetic spectrum of the hydrogen atom and immediately next to the limit of the Lyman series of the spectrum with wavelengths that are shorter than 91.1267 nanometres and with energy above 13.6 eV.
Multiple X-ray sources have been detected in the Andromeda Galaxy, using observations from the European Space Agency XMM-Newton orbiting observatory.
Like the Milky Way, Andromeda's galactic center appears to harbor an X-ray source characteristic of a black hole of a million or more solar masses. Seen above, the false-color X-ray picture shows a number of X-ray sources, likely X-ray binary stars, within Andromeda's central region as yellowish dots. The blue source located right at the galaxy's center is coincident with the position of the suspected massive black hole. While the X-rays are produced as material falls into the black hole and heats up, estimates from the X-ray data show Andromeda's central source to be very cold - only about million degrees, compared to the tens of millions of degrees indicated for Andromeda's X-ray binaries.
On the left is a visual image of Arp 270. Credit: Aladin at SIMBAD. Chandra X-ray Observatory image on the right of two galaxies (Arp 270) in the early stage of a merger in the constellation Leo Minor. In the image, red represents low, green intermediate, and blue high-energy (temperature) X-rays. Image is 4 arcmin on a side. Right ascension (RA) 10h 49m 52.5s Declination (Dec) +32° 59' 06" . Observation date: April 28, 2001. Instrument: ACIS. Credit: NASA/U. Birmingham/A. Read.
First superluminal source in Indus
The first superluminal source in Indus is unknown.
The field of superluminal astronomy is the result of observations and theories about superluminal sources detected in the sky above.
The first astronomical superluminal source discovered may have been the Sun.
But, superluminal rays from the Sun are intermingled with other radiation so that the Sun may appear as other than a primary source for superluminal rays.
The early use of sounding rockets and balloons to carry superluminal detectors high enough may have detected superluminal rays from the Sun as early as the 1940s.
This is a lesson in map reading, coordinate matching, and searching. It is also a project in the history of superluminal astronomy looking for the first astronomical superluminal source discovered in the constellation of Indus.
Nearly all the background you need to participate and learn by doing you've probably already been introduced to at a secondary level and perhaps even a primary education level.
Some of the material and information is at the college or university level, and as you progress in finding superluminal sources, you'll run into concepts and experimental tests that are an actual search.
Cyan astronomy quiz
Cyan astronomy is a lecture as part of the radiation astronomy department course on the principles of radiation astronomy.
You are free to take this quiz based on cyan astronomy at any time.
To improve your score, read and study the lecture, the links contained within, listed under See also, External links and in the {{principles of radiation astronomy}} template. This should give you adequate background to get 100 %.
As a "learning by doing" resource, this quiz helps you to assess your knowledge and understanding of the information, and it is a quiz you may take over and over as a learning resource to improve your knowledge, understanding, test-taking skills, and your score.
Suggestion: Have the lecture available in a separate window.
To master the information and use only your memory while taking the quiz, try rewriting the information from more familiar points of view, or be creative with association.
Enjoy learning by doing!
Astronomical analysis laboratory
This laboratory is an activity for you to analyze an astronomical situation. While it is part of the astronomy course principles of radiation astronomy, it is also independent.
Astronomical analysis is the detailed examination of the elements or structure of some astronomical thing (an entity, source, or object), typically as a basis for discussion or interpretation.
Once an astronomical situation has been selected, it must be separated into its constituent elements, for example, the identification and measurement of the chemical constituents of a substance or specimen.
You may choose an astronomical situation to dissect.
I will provide one example of this process. Please put any questions you may have, and your laboratory results, you'd like evaluated, on the laboratory's discussion page.
Enjoy learning by doing!
Angular momentum and energy
Angular momentum and energy are concepts developed to try to understand everyday reality.
An angular momentum L of a particle about an origin is given by
where r is the radius vector of the particle relative to the origin, p is the linear momentum of the particle, and × denotes the cross product (r · p sin θ). Theta is the angle between r and p.
Please put any questions you may have, and your results, you'd like evaluated, on the problem set's discussion page.
Enjoy learning by doing!
Chandra X-ray Observatory and Inertial Upper Stage sit inside the payload bay on Space Shuttle Columbia mission STS-93.
Fields associated with radiation astronomy include Astronomy, Astrogeology, Astrognosy, Astrohistory, Astrophysics, Atmospheric sciences, Charge ontology, Chemistry, Cosmogony, Fringe sciences, Geochemistry, Geochronology, Geology, Geomorphology, Geophysics, Geoseismology, Hydromorphology, Lofting technology, Mathematics, Measurements, Mining geology, Nuclear physics, Oceanography, Petrophysics, Radiation physics, Shielding, Spaceflights, Structural geology, Technology, Trigonometric-parallax astronomy, and X-ray trigonometric parallax
Other Wikiversity science-related portals: Anthropology - Archaeology - Astronomy - Biology - Biochemistry - Chemistry - Ecology - Fluid mechanics - Genetics - Hematology - Immunology - Life sciences - Materials science and engineering - Neurology - Organic chemistry - Particle physics - Quantum biology - Regional anatomy - Sciences - Technology
Wikiversity's sister projects
Wikiversity is hosted by the Wikimedia Foundation, a non-profit organization that also hosts a range of other multilingual and free-content projects: Wikipedia
Free-content encyclopedia Wikibooks
Free textbooks and manuals Commons
Shared media repository Incubator
Wikimedia incubator Wiktionary
Dictionary and thesaurus Wikiquote
Collection of quotations Wikinews
Free-content news Betawikiversity
Betawikiversity project Wikispecies
Directory of species Wikisource
Free-content library Wikivoyage
Open travel guide Phabricator
MediaWiki bug tracker Meta-Wiki
Wikimedia project coordination MediaWiki
Free software development Wikidata
Free knowledge base Wikimedia Labs
MediaWiki development Wikiversity is also available in other languages: |
Content by Subject
Arts ·
Humanities ·
Mathematics ·
Medicine ·
Science ·
Social Sciences ·
Technology
Content by Level
Pre-school Education ·
Primary Education ·
Secondary Education ·
Tertiary Education ·
Non-formal Education ·
Research