Portal:Radiation astronomy

Radiation astronomy is astronomy applied to the various extraterrestrial sources of radiation, especially at night. It is also conducted above the Earth's atmosphere and at locations away from the Earth, by satellites and space probes, as a part of explorational (or exploratory) radiation astronomy.
Seeing the Sun and feeling the warmth of its rays is probably a student's first encounter with an astronomical radiation source. This will happen from a very early age, but a first understanding of the concepts of radiation may occur at a secondary educational level.
Radiation is all around us on top of the Earth's crust, regolith, and soil, where we live. The study of radiation, including radiation astronomy, usually intensifies at the university undergraduate level.
And, generally, radiation becomes hazardous, when a student embarks on graduate study.
Cautionary speculation may be introduced unexpectedly to stimulate the imagination and open a small crack in a few doors that may appear closed at present. As such, this learning resource incorporates some state-of-the-art results from the scholarly literature.
The laboratories of radiation astronomy are limited to the radiation observatories themselves and the computers and other instruments (sometimes off site) used to analyze the results.
Radiation astronomy objects

Def. a hemispherical pit a basinlike opening or mouth about which a cone is often built up any large roughly circular depression or hole is called a crater.
The image at right shows a chain of 13 craters (Enki Catena) on Ganymede measuring 161.3 km in length. "The Enki craters formed across the sharp boundary between areas of bright terrain and dark terrain, delimited by a thin trough running diagonally across the center of this image. The ejecta deposit surrounding the craters appears very bright on the bright terrain. Even though all the craters formed nearly simultaneously, it is difficult to discern any ejecta deposit on the dark terrain.
Stellar surface fusion

Stellar surface fusion occurs above a star's photosphere to a limited extent as found in studies of near coronal cloud activity.
Surface fusion is produced by reactions during or preceding a stellar flare and at much lower levels elsewhere above the photosphere of a star.
"Nuclear interactions of ions accelerated at the surface of flaring stars can produce fresh isotopes in stellar atmospheres."[1]
"This energy [1032 to 1033 ergs] appears in the form of electromagnetic radiation over the entire spectrum from γ-rays to radio burst, in fast electrons and nuclei up to relativistic energies, in the creation of a hot coronal cloud, and in large-scale mass motions including the ejections of material from the Sun."[2]
"The new reaction 208Pb(59Co,n)266Mt was studied using the Berkeley Gas-filled Separator [BGS] at the Lawrence Berkeley National Laboratory [LBNL] 88-Inch Cyclotron."[3]
266Mt has been produced using the 209Bi(58Fe,n)266Mt reaction.[3]
"Reactions with various medium-mass projectiles on nearly spherical, shell-stabilized 208Pb or 209Bi targets have been used in the investigations of transactinide (TAN) elements and their decay properties for many years. These so-called “cold fusion” reactions produce weakly excited (10-15 MeV) [1] compound nuclei (CNs) at bombarding energies at or near the Coulomb barrier that de-excite by the emission of one to two neutrons."[3]
"The laboratory-frame, center-of-target energy used was 291.5 MeV, corresponding to a CN excitation energy of 14.9 MeV."[3]
"At the start of the experiment the BGS magnet settings were chosen to guide products with a magnetic rigidity of 2.143 T·m to the center of the [focal plane detector] FPD. After the first event of 266Mt was detected in strip 45 (near one edge of the FPD), the magnetic field strength was decreased to 2.098 T·m in an effort to shift the distribution of products toward the center of the detector."[3]
"258Db [has been produced] via the 209Bi(50Ti,n) and 208Pb(51V,n) reactions [15], and 262Bh via the 209Bi(54Cr,n) and 208Pb(55Mn,n) reactions [13, 16]."[3]
"Hofmann et al. at Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, Germany, and Morita et al., at the Institute of Physical and Chemical Research (RIKEN) in Saitama, Japan, have studied the 209Bi(64Ni,n)272Rg reaction [7, 17, 18]. The complementary 208Pb(65Cu,n)272Rg reaction was studied by Folden et al. at the Lawrence Berkeley National Laboratory (LBNL) [19]."[3]
"Based on the observation of the long-lived isotopes of roentgenium, 261Rg and 265Rg (Z = 111, t1/2 ≥ 108 y) in natural Au, an experiment was performed to enrich Rg in 99.999% Au. 16 mg of Au were heated in vacuum for two weeks at a temperature of 1127°C (63°C above the melting point of Au). The content of 197Au and 261Rg in the residue was studied with high resolution inductively coupled plasma-sector field mass spectrometry (ICP-SFMS). The residue of Au was 3 × 10−6 of its original quantity. The recovery of Rg was a few percent. The abundance of Rg compared to Au in the enriched solution was about 2 × 10−6, which is a three to four orders of magnitude enrichment."[4]References
- ↑ Vincent Tatischeff, J.-P. Thibaud, I. Ribas (January 2008). "Nucleosynthesis in stellar flares". eprint arXiv:0801.1777. http://arxiv.org/pdf/0801.1777. Retrieved 2012-11-09.
- ↑ R. P. Lin and H. S. Hudson (September-October 1976). "Non-thermal processes in large solar flares". Solar Physics 50 (10): 153-78. doi:10.1007/BF00206199. http://adsabs.harvard.edu/full/1976SoPh...50..153L. Retrieved 2013-07-07.
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 S. L. Nelson, K. E. Gregorich, I. Dragojević, J. Dvořák, P. A. Ellison, M. A. Garcia, J. M. Gates, L. Stavsetra, M. N. Ali, and H. Nitsche (February 25, 2009). "Comparison of complementary reactions in the production of Mt". Physical Review C 79 (2): e027605. doi:10.1103/PhysRevC.79.027605. http://prc.aps.org/abstract/PRC/v79/i2/e027605. Retrieved 2014-04-07.
- ↑ A. Marinov, A. Pape, D. Kolb, L. Halicz, I. Segal, N. Tepliakov and R. Brandt (2011). "Enrichment of the Superheavy Element Roentgenium (Rg) in Natural Au". International Journal of Modern Physics E 20 (11): 2391-2401. doi:10.1142/S0218301311020393. http://www.phys.huji.ac.il/~marinov/publications/Rg_261_arXiv_77.pdf. Retrieved 2014-04-08.
Continua

Lyc photon or Ly continuum photon or Lyman continuum photon are a kind of photon emitted from stars. Hydrogen is ionized by absorption of Lyc photons. Lyc photons are in the ultraviolet portion of the electromagnetic spectrum of the hydrogen atom and immediately next to the limit of the Lyman series of the spectrum with wavelengths that are shorter than 91.1267 nanometres and with energy above 13.6 eV.


A quasi-stellar radio source (quasar) is a very energetic and distant galaxy with an active galactic nucleus (AGN). QSO 0836+7107 is a Quasi-Stellar Object that emits baffling amounts of radio energy. The radio signal is caused by electrons spiraling along the magnetic fields. These electrons can also interact with visible light emitted by the disk around the AGN or the black hole at its center, and that pumps them to emit X- and gamma-radiation.
On board the Compton Gamma Ray Observatory (CGRO) is the Burst and Transient Source Experiment (BATSE) which detects in the 20 keV to 8 MeV range. QSO 0836+7107 or 4C 71.07 was detected by BATSE as a source of soft gamma rays and hard X-rays. "What BATSE has discovered is that it can be a soft gamma-ray source". QSO 0836+7107 is the faintest and most distant object to be observed in soft gamma rays. It has already been observed in gamma rays by the Energetic Gamma Ray Experiment Telescope (EGRET) also aboard the Compton Gamma Ray Observatory.

This seven-million-cubic-foot super-pressure balloon is the largest single-cell, super-pressure, fully-sealed balloon ever flown. Credit: NASA.{{free media}}
First X-ray source in Andromeda
The first X-ray source in Andromeda is not known. This lesson is also a research project that needs your help. And, in exchange you'll be free to learn about star maps, astronomy, and the speciality of X-ray astronomy. The first such source in the constellation Andromeda is an astronomical X-ray source detected at some point in human history between now and a distant time mark in the past. It is an astronomical X-ray source detected in the constellation Andromeda.
This learning resource is experimental in nature because each learner interested in seeking this first X-ray source may start with any source and attempt to determine if this source is in Andromeda and is an X-ray source. Each currently known source has a history that includes earlier and earlier detections. To succeed, the adventurer need only show that their source has an earlier detection date as an X-ray source than previous adventurers.
The celestial sphere has coordinate systems often used to place a point source in the heavens. Familiarity with these coordinate systems is not a prerequisite. An introductory geography or map reading course or some familiarity with following a map is all that's needed.
Over the history of X-ray astronomy a number of astronomical X-ray sources have been discovered and studied, usually because they have something special about them that intrigues the researcher. The challenge of this resource is geometrical, astrophysical, and historical. As the ultimate answer is unknown, this is actually a research project, yet you may succeed!
Enjoy learning by doing!
Radiation astrochemistry quiz

Radiation chemistry, or astronomical radiation chemistry, is a lecture for the course principles of radiation astronomy about the abundance and reactions of chemical elements and molecules in the universe.
You are free to take this quiz at any time and as many times as you wish to improve your score.
Once you’ve read and studied the lecture, the links contained within, and listed under See also, External links and those in the {{principles of radiation astronomy}} template, you should have adequate background to get 100 %.
Enjoy learning by doing!
Cratering astronomy laboratory
This laboratory is an activity for you to create or analyze a cratering. While it is part of the astronomy course principles of radiation astronomy, it is also independent.
Some suggested types of cratering to consider include a lightning strike, a bullet shot into some material, a water droplet hitting the surface of a beaker of water, a subterranean explosion, a sand vortex, or a meteorite impact.
More importantly, there is your cratering idea. And, yes, you can crater a peanut butter and jelly sandwich if you wish to.
Okay, this is an astronomy cratering laboratory, but you may create what a crater is. Another example is a volcanic crater.
I will provide an example of a cratering experiment. The rest is up to you.
Please put any questions you may have, and your laboratory results, you'd like evaluated, on the laboratory's discussion page.
Enjoy learning by doing!
Energy phantoms

Students start from specific situations of motion, determine how to calculate energy and convert units, then evaluate types of energy.
Def. a quantity that denotes the ability to do work and is measured in a unit dimensioned in mass × distance²/time² (ML²/T²) or the equivalent is called energy.
Def. a physical quantity that denotes ability to push, pull, twist or accelerate a body which is measured in a unit dimensioned in mass × distance/time² (ML/T²): SI: newton (N); CGS: dyne (dyn) is called force.
In astronomy we estimate distances and times when and where possible to obtain forces and energy.
The key values to determine in both force and energy are (L/T²) and (L²/T²). Force (F) x distance (L) = energy (E), L/T² x L = L²/T². Force and energy are related to distance and time using proportionality constants.
Every point mass attracts every single other point mass by a force pointing along the line intersecting both points. The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them:[1] - ,
where:
- F is the force between the masses,
- G is the gravitational constant,
- m1 is the first mass,
- m2 is the second mass, and
- r is the distance between the centers of the masses.
The diagram shows two masses attracting one another. Credit: Dna-Dennis.
In the International System of Units (SI) units, F is measured in newtons (N), m1 and m2 in kilograms (kg), r in meters (m), and the constant G is approximately equal to 6.674×10−11
N m2 kg−2.[2]
Observationally, we may not know the origin of the force.
Coulomb's law states that the electrostatic force experienced by a charge, at position , in the vicinity of another charge, at position , in vacuum is equal to:
where is the electric constant and is the distance between the two charges.
Coulomb's constant is
where the constant is called the permittivity of free space in SI units of C2 m−2 N−1.
For reality, is the relative (dimensionless) permittivity of the substance in which the charges may exist.
The energy for this system is
where is the displacement.
References
- ↑ - Proposition 75, Theorem 35: p.956 - I.Bernard Cohen and Anne Whitman, translators: Isaac Newton, The Principia: Mathematical Principles of Natural Philosophy. Preceded by A Guide to Newton's Principia, by I. Bernard Cohen. University of California Press 1999 ISBN 0-520-08816-6 ISBN 0-520-08817-4
- ↑ CODATA2006. http://www.physics.nist.gov/cgi-bin/cuu/Value?bg.

Chandra image of two galaxies (Arp 270) in the early stage of a merger in the constellation Leo Minor. In the image, red represents low, green intermediate, and blue high-energy (temperature) X-rays. Image is 4 arcmin on a side. RA 10h 49m 52.5s Dec Template:Dec. Observation date: April 28, 2001. Instrument: ACIS. Credit: NASA/U. Birmingham/A.Read.
Fields associated with radiation astronomy include Astronomy, Astrogeology, Astrognosy, Astrohistory, Astrophysics, Atmospheric sciences, Charge ontology, Chemistry, Cosmogony, Fringe sciences, Geochemistry, Geochronology, Geology, Geomorphology, Geophysics, Geoseismology, Hydromorphology, Lofting technology, Mathematics, Measurements, Mining geology, Nuclear physics, Oceanography, Petrophysics, Radiation physics, Shielding, Spaceflights, Structural geology, Technology, Trigonometric-parallax astronomy, and X-ray trigonometric parallax
Other Wikiversity science-related portals: Anthropology - Archaeology - Astronomy - Biology - Biochemistry - Chemistry - Ecology - Fluid mechanics - Genetics - Hematology - Immunology - Life sciences - Materials science and engineering - Neurology - Organic chemistry - Particle physics - Quantum biology - Regional anatomy - Sciences - Technology
Wikiversity's sister projects
Wikiversity is hosted by the Wikimedia Foundation, a non-profit organization that also hosts a range of other multilingual and free-content projects: ![]() Wikipedia
Free-content encyclopedia ![]() Wikibooks
Free textbooks and manuals ![]() Commons
Shared media repository ![]() Incubator
Wikimedia incubator ![]() Wiktionary
Dictionary and thesaurus ![]() Wikiquote
Collection of quotations ![]() Wikinews
Free-content news ![]() Betawikiversity
Betawikiversity project ![]() Wikispecies
Directory of species ![]() Wikisource
Free-content library ![]() Wikivoyage
Open travel guide ![]() Phabricator
MediaWiki bug tracker ![]() Meta-Wiki
Wikimedia project coordination ![]() MediaWiki
Free software development ![]() Wikidata
Free knowledge base ![]() Wikimedia Labs
MediaWiki development Wikiversity is also available in other languages: |
Content by Subject
Arts ·
Humanities ·
Mathematics ·
Medicine ·
Science ·
Social Sciences ·
Technology
Content by Level
Pre-school Education ·
Primary Education ·
Secondary Education ·
Tertiary Education ·
Non-formal Education ·
Research