Portal:Radiation astronomy

From Wikiversity
Jump to navigation Jump to search
Radiation astronomy
This image is a composite of several types of radiation astronomy: radio, infrared, visual, ultraviolet, soft and hard X-ray. Credit: NASA.

Radiation astronomy is astronomy applied to the various extraterrestrial sources of radiation, especially at night. It is also conducted above the Earth's atmosphere and at locations away from the Earth, by satellites and space probes, as a part of explorational (or exploratory) radiation astronomy.

Seeing the Sun and feeling the warmth of its rays is probably a student's first encounter with an astronomical radiation source. This will happen from a very early age, but a first understanding of the concepts of radiation may occur at a secondary educational level.

Radiation is all around us on top of the Earth's crust, regolith, and soil, where we live. The study of radiation, including radiation astronomy, usually intensifies at the university undergraduate level.

And, generally, radiation becomes hazardous, when a student embarks on graduate study.

Cautionary speculation may be introduced unexpectedly to stimulate the imagination and open a small crack in a few doors that may appear closed at present. As such, this learning resource incorporates some state-of-the-art results from the scholarly literature.

The laboratories of radiation astronomy are limited to the radiation observatories themselves and the computers and other instruments (sometimes off site) used to analyze the results.

Selected radiation astronomy
An atmospheric river forms over Hawai'i then heads toward California 10-11 April 2017. Credit: UW-CIMSS.{{fairuse}}

"Several times a year an atmospheric river [shown in the image on the right forming over Hawai'i]—a long, narrow conveyor belt of storms that stream in relentlessly from the Pacific Ocean—drops inches of rain or feet of snow on the U.S. west coast. Such a system triggered floods and mudslides in central and southern California this past weekend [2-3 February 2019]."

"Atmospheric rivers flow through the sky about a mile above the ocean surface, and may extend across a thousand miles of ocean to the coast. Some bring routine rain but the more intense systems can carry as much water as 15 Mississippi Rivers. The series of storms striking land can arrive for days or, occasionally, weeks on end. They hit west-facing coastlines worldwide, although the U.S. experiences more than most other national coasts."

The “atmospheric river scale” "ranks severity and impacts, from category 1 (weak) to category 5 (exceptional)."

"Without a scale, we really had no way to objectively communicate what would be a strong storm or a weak one."

"Scientists, the media and the public viewed atmospheric rivers as primarily a hazard, but the weaker ARs are quite beneficial. Water managers made it clear to us that a rating scale would be helpful."

"The scale, published Tuesday in the Bulletin of the American Meteorological Society, ranks atmospheric rivers on five levels:"

  • Category 1: Weak—primarily beneficial
  • Category 2: Moderate—mostly beneficial, but also somewhat hazardous
  • Category 3: Strong—balance of beneficial and hazardous
  • Category 4: Extreme—mostly hazardous, but also beneficial (if persistent drought)
  • Category 5—Exceptional—primarily hazardous
Selected lecture

Radiation astronomy objects

The image shows a chain of craters on Ganymede. Credit: Galileo Project, Brown University, JPL, NASA.

Def. a hemispherical pit a basinlike opening or mouth about which a cone is often built up any large roughly circular depression or hole is called a crater.

The image at right shows a chain of 13 craters (Enki Catena) on Ganymede measuring 161.3 km in length. "The Enki craters formed across the sharp boundary between areas of bright terrain and dark terrain, delimited by a thin trough running diagonally across the center of this image. The ejecta deposit surrounding the craters appears very bright on the bright terrain. Even though all the craters formed nearly simultaneously, it is difficult to discern any ejecta deposit on the dark terrain.

Selected theory

Theoretical astronomy

This image is a theory for the interior of the Sun. Credit: Pbroks13.

Theoretical astronomy at its simplest is the definition of terms to be applied to astronomical entities, sources, and objects.

Def. an "expanse of space that seems to be [overhead] like a dome"[1] is called a sky.

Computer simulations are usually used to represent astronomical phenomena.

Part of the fun of theory is extending the known to what may be known to see if knowing is really occurring, or is it something else.

The laboratories of astronomy are limited to the observatories themselves. The phenomena observed are located in the heavens, far beyond the reach, let alone control, of the astronomical observer.[2] “So how can one be sure that what one sees out there is subject to the same rules and disciplines of science that govern the local laboratory experiments of physics and chemistry?”[2] “The most incomprehensible thing about the universe is that it is comprehensible.” - Albert Einstein.[2]

References

  1. Philip B. Gove, ed. (1963). Webster's Seventh New Collegiate Dictionary. Springfield, Massachusetts: G. & C. Merriam Company. p. 1221. Retrieved 2011-08-26.
  2. 2.0 2.1 2.2 Narlikar JV (1990). Pasachoff JM, Percy JR (ed.). Curriculum for the Training of Astronomers ‘’In: The Teaching of astronomy. Cambridge, England: Cambridge University Press.
Selected topic

Bands

This is Saturn imaged with the Stockholm Infrared Camera (SIRCA) in the H2O band. Credit: M. Gålfalk, G. Olofsson and H.-G. Florén, Nordic Optical Telescope.

At the right is Saturn imaged by the Stockholm Infrared Camera (SIRCA) in the H2O infrared band to show the presence of water vapor. The image is cut off near the top due to the presence of Saturn's rings.

The Sun's emission in the lowest UV bands, the UVA, UVB, and UVC bands, are of interest, as these are the UV bands commonly encountered from artificial sources on Earth. The shorter bands of UVC, as well as even more energetic radiation as produced by the Sun, generate the ozone in the ozone layer when single oxygen atoms produced by UV photolysis of dioxygen react with more dioxygen. The ozone layer is especially important in blocking UVB and part of UVC, since the shortest wavelengths of UVC (and those even shorter) are blocked by ordinary air.

Selected X-ray astronomy article
RHESSI observes 2.2 MeV line emission from a solar flare. The solar flare at Active Region 10039 on July 23, 2002 exhibits many exceptional high-energy phenomena including the 2.223 MeV neutron capture line and the 511 keV electron-positron (antimatter) annihilation line. The RHESSI low-energy channels (12-25 keV) are represented in red and appear predominantly in coronal loops. The high-energy flux appears as blue at the footpoints of the coronal loops. Violet is used to indicate the location and relative intensity of the 2.2 MeV emission. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio.

Stellar surface fusion is one of the few direct views physicists have of thermonuclear fusion. Nuclear fusion usually occurs within a star as a part of stellar nucleosynthesis. However, an accreting star can undergo surface nuclear burning when the accretion rate exceeds a certain limit. The stellar luminosity then becomes dominated by hydrogen burning. The energy liberated by hydrogen burning exceeds that due to accretion by an order of magnitude or more, depending on the mass of the star. Steady hydrogen burning on the stellar surface processes hydrogen into helium at the rate of accretion. Surface fusion occurs above a star's photosphere to a limited extent as found in studies of near coronal and corona activity.

Based on the 3He-flare flux from the Sun's surface and Surveyor 3 samples (implanted 15N and 14C in lunar material) from the surface of the Moon, the level of nuclear fusion occurring in the solar atmosphere is approximately at least two to three orders of magnitude greater than that estimated from solar flares such as those of August 1972.

Objects
Selected image
800crab.png

The Crab Nebula is a remnant of an exploded star. This is the Crab Nebula in various energy bands, including a hard X-ray image from the HEFT data taken during its 2005 observation run. Each image is 6′ wide. Credit: NASA.

Selected lesson

First cyan source in Caelum

This is an image of NGC 1679 in Caelum. It is a spiral galaxy located two degrees south of Zeta Caeli. Credit: NASA/ESA (Wikisky).

The first cyan source in Caelum is unknown.

This is a lesson in map reading, coordinate matching, and searching. It is also a project in the history of cyan astronomy looking for the first astronomical cyan source discovered in the constellation of Caelum.

Nearly all the background you need to participate and learn by doing you've probably already been introduced to at a secondary level.

Some of the material and information is at the college or university level, and as you progress in finding cyan sources, you'll run into concepts and experimental tests that are an actual search.

To succeed in finding a cyan source in Caelum is the first step. Next, you'll need to determine the time stamp of its discovery and compare it with any that have already been found. Over the history of cyan astronomy a number of sources have been found, many as point sources in the night sky. These points are located on the celestial sphere using coordinate systems. Familiarity with these coordinate systems is not a prerequisite. Here the challenge is geometrical, astrophysical, and historical.

NGC 1679 in the image at left appears to contain some cyan, probably as a result of a mixture of light blue and yellow.

Selected quiz

Radiation detector astronomy quiz

This is an animation of a radiation scintillation counter. Credit: KieranMaher.

Radiation astronomy detectors is a lecture as part of the radiation astronomy department course on the principles of radiation astronomy.

You are free to take this quiz based on radiation astronomy detectors at any time.

To improve your score, read and study the lecture, the links contained within, listed under See also, External links, and in the {{principles of radiation astronomy}} template. This should give you adequate background to get 100 %.

As a "learning by doing" resource, this quiz helps you to assess your knowledge and understanding of the information, and it is a quiz you may take over and over as a learning resource to improve your knowledge, understanding, test-taking skills, and your score.

Suggestion: Have the lecture available in a separate window.

To master the information and use only your memory while taking the quiz, try rewriting the information from more familiar points of view, or be creative with association.

This quiz may need up to an hour to take and is equivalent to an hourly.

Enjoy learning by doing!

Selected laboratory

Electron beam heating laboratory

This is an X-ray image of the coronal clouds near the Sun. Credit: NASA Goddard Space Flight Center.

This laboratory is an activity for you to create a method of heating the solar corona or that of a star of your choice. While it is part of the astronomy course principles of radiation astronomy, it is also independent.

Some suggested entities to consider are electromagnetic radiation, electrons, positrons, neutrinos, gravity, time, Euclidean space, Non-Euclidean space, magnetic reconnection, or spacetime.

More importantly, there are your entities.

Please define your entities or use available definitions.

Usually, research follows someone else's ideas of how to do something. But, in this laboratory you can create these too.

Okay, this is an astronomy coronal heating laboratory.

Yes, this laboratory is structured.

I will provide an example of electron beam heating calculations. The rest is up to you.

Please put any questions you may have, and your laboratory results, you'd like evaluated, on the laboratory's discussion page.

Enjoy learning by doing!

Selected problems

Column densities

A region of the sky called the "Lockman Hole", located in the constellation of Ursa Major, is one of the areas surveyed in infrared light by the Herschel Space Observatory. Credit: ESA/Herschel/SPIRE/HerMES.

A column density is the number of units of matter observed along a line of sight that has an area of observation. This area has a height that is the distance to an object, or through which observation is taking place.

"A region of the sky [at right] called the "Lockman Hole", located in the constellation of Ursa Major, is one of the areas surveyed in infrared light by the Herschel Space Observatory. All of the little dots in this picture are distant galaxies. The pattern of their collective light is what's known as the cosmic infrared background. By studying this pattern, astronomers were able to measure how much dark matter it takes to create a galaxy bursting with young stars."[1]

References

  1. Jamie Bock (February 16, 2011). Herschel's View of 'Lockman Hole'. Pasadena, California USA: Caltech. Retrieved 2014-03-15.
Selected X-ray astronomy pictures
M31 Core in X-rays.jpg

Using the orbiting Chandra X-ray telescope, astronomers have imaged the center of our near-twin island universe, finding evidence for a bizarre object. Like the Milky Way, Andromeda's galactic center appears to harbor an X-ray source characteristic of a black hole of a million or more solar masses. Seen above, the false-color X-ray picture shows a number of X-ray sources, likely X-ray binary stars, within Andromeda's central region as yellowish dots. The blue source located right at the galaxy's center is coincident with the position of the suspected massive black hole. While the X-rays are produced as material falls into the black hole and heats up, estimates from the X-ray data show Andromeda's central source to be very cold - only about million degrees, compared to the tens of millions of degrees indicated for Andromeda's X-ray binaries.

Fields
Related portals
Things you can do


Wikimedia
Wikiversity's sister projects

Wikiversity is hosted by the Wikimedia Foundation, a non-profit organization that also hosts a range of other multilingual and free-content projects:

Wikipedia
Wikipedia
Free-content encyclopedia
Wikibooks
Wikibooks
Free textbooks and manuals
Commons
Commons
Shared media repository
Incubator
Incubator
Wikimedia incubator
Wiktionary
Wiktionary
Dictionary and thesaurus
Wikiquote
Wikiquote
Collection of quotations
Wikinews
Wikinews
Free-content news
Betawikiversity
Betawikiversity
Betawikiversity project
Wikispecies
Wikispecies
Directory of species
Wikisource
Wikisource
Free-content library
Wikivoyage
Wikivoyage
Open travel guide
Phabricator
Phabricator
MediaWiki bug tracker
Meta-Wiki
Meta-Wiki
Wikimedia project coordination
MediaWiki
MediaWiki
Free software development
Wikidata
Wikidata
Free knowledge base
Wikimedia Labs
Wikimedia Labs
MediaWiki development

Wikiversity is also available in other languages:
DeutschFrançaisРусскийČeštinaमुखपृष्ठItalianoPortuguêsEspañolالعربيةSvenskaSuomiSlovenščinaΕλληνικά日本語한국어Other

Purge server cache