Portal:Radiation astronomy

From Wikiversity
Jump to navigation Jump to search
Radiation astronomy
This image is a composite of several types of radiation astronomy: radio, infrared, visual, ultraviolet, soft and hard X-ray. Credit: NASA.

Radiation astronomy is astronomy applied to the various extraterrestrial sources of radiation, especially at night. It is also conducted above the Earth's atmosphere and at locations away from the Earth, by satellites and space probes, as a part of explorational (or exploratory) radiation astronomy.

Seeing the Sun and feeling the warmth of its rays is probably a student's first encounter with an astronomical radiation source. This will happen from a very early age, but a first understanding of the concepts of radiation may occur at a secondary educational level.

Radiation is all around us on top of the Earth's crust, regolith, and soil, where we live. The study of radiation, including radiation astronomy, usually intensifies at the university undergraduate level.

And, generally, radiation becomes hazardous, when a student embarks on graduate study.

Cautionary speculation may be introduced unexpectedly to stimulate the imagination and open a small crack in a few doors that may appear closed at present. As such, this learning resource incorporates some state-of-the-art results from the scholarly literature.

The laboratories of radiation astronomy are limited to the radiation observatories themselves and the computers and other instruments (sometimes off site) used to analyze the results.

Selected radiation astronomy

On the right is a visual astronomy image of a fireball trail with some burning still visible from a meteor as it passed overhead in Chelyabinsk, Russia, on February 15, 2013.

This image shows "[t]he trail of a falling object ... seen above the Urals city of Chelyabinsk [on] February 15, 2013".

Selected lecture

Strong forces

"In field theory it is known that coupling constants “run”. This means that the values of the coupling constants that one measures depend on the energy at which the measurement is performed. [...] the three different coupling constants [one each for the strong force, electromagnetic force, and the weak force] of the standard model seem to converge to the same value at an energy scale of about 1016 GeV [...] This suggests that there is only one coupling constant at high energies and most likely only one symmetry group. [...] The current belief [is] that the electromagnetic, weak and strong forces [are] unified at about 1016 GeV [as such] one has to rely on [the] particle physics interactions which can lead to electromagnetic radiation and cosmic rays".[1]

References

  1. Tanmay Vachaspati (1998). "Topological defects in the cosmos and lab". Contemporary Physics 39 (4): 225-37. doi:10.1080/001075198181928. http://www.tandfonline.com/doi/abs/10.1080/001075198181928. Retrieved 2013-11-05. 
Selected theory

Theoretical radiation astronomy

At the bottom of this visible emission model is a visual intensity curve. Credit: Stanlekub.

At its simplest theoretical radiation astronomy is the definition of terms to be applied to astronomical radiation phenomena.

Def. a theory of the science of the biological, chemical, physical, and logical laws (or principles) with respect to any natural radiation source in the sky especially at night is called theoretical radiation astronomy.

Exploratory theory is the playtime activity that leads to discoveries which better our world. In the radiation physics laboratories here on Earth, the emission, reflection, transmission, absorption, and fluorescence of radiation is studied and laws relative to sources are proven.

A principle is a law or rule that has to be, or usually is to be followed, or can be desirably followed, or is an inevitable consequence of something, such as the laws observed in nature or the way that a system is constructed. The principles of such a system are understood by its users as the essential characteristics of the system, or reflecting system's designed purpose, and the effective operation or use of which would be impossible if any one of the principles was to be ignored.[1]

Radiation astronomy consists of three fundamental parts:

  1. derivation of logical laws with respect to incoming radiation,
  2. natural radiation sources outside the Earth, and
  3. the sky and associated realms with respect to radiation.

Def. a spontaneous emission of an α ray, β ray, or γ ray by the disintegration of an atomic nucleus is called radioactivity.[2]

References

  1. Guido Alpa (1994). "General Principles of Law". Annual Survey of International & Comparative Law 1: 1. http://heinonlinebackup.com/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/ansurintcl1&section=4. Retrieved 2012-04-29. 
  2. Philip B. Gove, ed. (1963). Webster's Seventh New Collegiate Dictionary. Springfield, Massachusetts: G. & C. Merriam Company. p. 1221. |access-date= requires |url= (help)
Selected topic

Backgrounds

This graph shows the power density spectrum of the extragalactic or cosmic gamma-ray background (CGB). Credit: pkisscs@konkoly.hu.

In the figure at right, CUVOB stands for the cosmic ultraviolet and optical background.

The diffuse extragalactic background light (EBL) is all the accumulated radiation in the Universe due to star formation processes, plus a contribution from active galactic nuclei (AGNs). This radiation covers the wavelength range between ~ 0.1-1000 microns (these are the ultraviolet, optical, and infrared regions of the electromagnetic spectrum). The EBL is part of the diffuse extragalactic background radiation (DEBRA), which by definition covers the overall electromagnetic spectrum. After the cosmic microwave background, the EBL produces the second-most energetic diffuse background, thus being essential for understanding the full energy balance of the universe.

Selected X-ray astronomy article
This composite image contains the first picture of the Earth in X-rays, taken in March 1996, with the orbiting Polar satellite. The area of brightest X-ray emission is red. Such X-rays are not dangerous because they are absorbed by lower parts of the Earth's atmosphere. Credit: Polar, PIXIE, NASA. (The caption and image are from the Astronomy Picture of the Day for December 30, 1996.)

X-ray generation is producing X-radiation by a variety of phenomena. For example, when high-energy X-rays, gamma-rays, electrons, or protons bombard materials, the excited atoms within emit characteristic "secondary" (or fluorescent) X-rays. Alternately, whenever charged particles pass within certain distances of each other without being in fixed orbits, the accelerations (or decelerations) can give off X-rays.

Objects
Selected image
Chandra X-ray Observatory inside the Space Shuttle payload bay.jpg

The Chandra X-ray Observatory and the Inertial Upper Stage sit inside the payload bay on the Space Shuttle Columbia mission (STS-93). Credit: NASA.

Selected lesson

First ultraviolet source in Sagittarius

These two photographs were made by combining data from NASA's Galaxy Evolution Explorer spacecraft and the Cerro Tololo Inter-American Observatory in Chile. Credit: NASA/JPL-Caltech/JHU.

The first ultraviolet source in Sagittarius is unknown.

The field of ultraviolet astronomy is the result of observations and theories about ultraviolet sources detected in the sky above.

The first astronomical ultraviolet source discovered may have been the Sun.

But, ultraviolet waves from the Sun are intermingled with other radiation so that the Sun may appear as other than a primary source for ultraviolet waves.

The early use of sounding rockets and balloons to carry ultraviolet detectors high enough may have detected ultraviolet waves from the Sun as early as the 1940s.

This is a lesson in map reading, coordinate matching, and searching. It is also a project in the history of ultraviolet astronomy looking for the first astronomical ultraviolet source discovered in the constellation of Sagittarius.

Nearly all the background you need to participate and learn by doing you've probably already been introduced to at a secondary level and perhaps even a primary education level.

Some of the material and information is at the college or university level, and as you progress in finding ultraviolet sources, you'll run into concepts and experimental tests that are an actual search.

Selected quiz

Cosmic ray astronomy quiz

The cosmic-ray telescope collects data on the composition of the cosmic ray particles and their energy ranges. Credit: NASA.

Cosmic-ray astronomy is a lecture as part of the radiation astronomy course on the principles of radiation astronomy.

You are free to take this quiz based on cosmic-ray astronomy at any time.

To improve your score, read and study the lecture, the links contained within, listed under See also, External links, and in the {{principles of radiation astronomy}} template. This should give you adequate background to get 100 %.

As a "learning by doing" resource, this quiz helps you to assess your knowledge and understanding of the information, and it is a quiz you may take over and over as a learning resource to improve your knowledge, understanding, test-taking skills, and your score.

Suggestion: Have the lecture available in a separate window.

To master the information and use only your memory while taking the quiz, try rewriting the information from more familiar points of view, or be creative with association.

Enjoy learning by doing!

Selected laboratory

Cratering astronomy laboratory

The crater in Santa Ana Volcano is photographed from a United States Air Force C-130 Hercules flying above El Salvador. Credit: José Fernández, U.S Air Force.

This laboratory is an activity for you to create or analyze a cratering. While it is part of the astronomy course principles of radiation astronomy, it is also independent.

Some suggested types of cratering to consider include a lightning strike, a bullet shot into some material, a water droplet hitting the surface of a beaker of water, a subterranean explosion, a sand vortex, or a meteorite impact.

More importantly, there is your cratering idea. And, yes, you can crater a peanut butter and jelly sandwich if you wish to.

Okay, this is an astronomy cratering laboratory, but you may create what a crater is. Another example is a volcanic crater.

I will provide an example of a cratering experiment. The rest is up to you.

Please put any questions you may have, and your laboratory results, you'd like evaluated, on the laboratory's discussion page.

Enjoy learning by doing!

Selected problems

Furlongs per fortnight

It's about the chains. Credit: Stilfehler.{{free media}}

Furlongs per fortnight is a problem set with a contained quiz that focuses on the fundamentals of observational and deductive astronomy. In the activity Energy phantoms you learned about the value of distance, or displacement, and motion, speed, velocity, and acceleration. Here, you can practice and test yourself on converting from units that may or have occurred in the literature to units popular today.

Notation: let the symbol indicate the Earth's radius.

Notation: let the symbol indicate the radius of Jupiter.

Notation: let the symbol indicate the solar radius.

Both physics and astronomy use units and dimensions to describe observations.

Units of Physics and Astronomy
Dimension Astronomy Symbol Physics Symbol Conversion
time 1 day d 1 second s 1 d = 86,400 s[1]
time 1 "Julian year"[2] J 1 second s 1 J = 31,557,600 s
distance 1 astronomical unit AU 1 meter m 1 AU = 149,597,870.691 km[1]
angular distance 1 parsec pc 1 meter m 1 pc ~ 30.857 x 1012 km[1]

References

  1. 1.0 1.1 1.2 P. K. Seidelmann (1976). Measuring the Universe The IAU and astronomical units. International Astronomical Union. Retrieved 2011-11-27.
  2. International Astronomical Union "SI units" accessed February 18, 2010. (See Table 5 and section 5.15.) Reprinted from George A. Wilkins & IAU Commission 5, "The IAU Style Manual (1989)" (PDF file) in IAU Transactions Vol. XXB
Selected X-ray astronomy pictures
Rass orion layout.jpg

On the right is the visual image of the constellation Orion. On the left is Orion as seen in X-rays only. Betelgeuse is easily seen above the three stars of Orion's belt on the right. The X-ray colors represent the temperature of the X-ray emission from each star: hot stars are blue-white and cooler stars are yellow-red. The brightest object in the optical image is the full moon, which is also in the X-ray image. Credit: Konrad Denner/Wolfgang Voges. The X-ray image was actually obtained by the ROSAT satellite during the All-Sky Survey phase in 1990-1991.

Fields
Related portals
Wikimedia
Wikiversity's sister projects

Wikiversity is hosted by the Wikimedia Foundation, a non-profit organization that also hosts a range of other multilingual and free-content projects:

Wikipedia
Wikipedia
Free-content encyclopedia
Wikibooks
Wikibooks
Free textbooks and manuals
Commons
Commons
Shared media repository
Incubator
Incubator
Wikimedia incubator
Wiktionary
Wiktionary
Dictionary and thesaurus
Wikiquote
Wikiquote
Collection of quotations
Wikinews
Wikinews
Free-content news
Betawikiversity
Betawikiversity
Betawikiversity project
Wikispecies
Wikispecies
Directory of species
Wikisource
Wikisource
Free-content library
Wikivoyage
Wikivoyage
Open travel guide
Phabricator
Phabricator
MediaWiki bug tracker
Meta-Wiki
Meta-Wiki
Wikimedia project coordination
MediaWiki
MediaWiki
Free software development
Wikidata
Wikidata
Free knowledge base
Wikimedia Labs
Wikimedia Labs
MediaWiki development

Wikiversity is also available in other languages:
DeutschFrançaisРусскийČeštinaमुखपृष्ठItalianoPortuguêsEspañolالعربيةSvenskaSuomiSlovenščinaΕλληνικά日本語한국어Other

Purge server cache