From Wikiversity
Jump to navigation Jump to search
Cloud bands are clearly visible on Jupiter. Credit: NASA/JPL/USGS.

Jupiter is the largest planet in the Solar System and contains nearly 3/4 of all planetary matter.

With no solid surface, Jupiter is a gas and liquid filled giant. Its turbulent belts of clouds circulate parallel to the equator and often contain oval spots which are storm systems with the largest being easily twice the diameter of Earth. The great red spot has been observed for at least 300 years and rotates counter-clockwise with wind speeds of 270 miles per hour [430 km/hr].

Although observed and studied from Earth for centuries it wasn't until the mid 1970's that humans were able to get a closer look with the spacecraft Pioneer 10 and 11. The Voyager 1 and 2 spacecraft were launched with the specific purpose of collecting information and data on the Jovian worlds. In December 1995 the Galileo spacecraft entered into orbit and began it's long-term study of Jupiter and it's moons, a probe was also sent deep into the atmosphere of the gas giant.

Selected radiation astronomy


Zones, belts and vortices on Jupiter are shown. Credit: NASA/JPL/University of Arizona.

The wide equatorial zone is visible in the center surrounded by two dark equatorial belts (SEB and NEB).

"The large grayish-blue [irregular] "hot spots" at the northern edge of the white Equatorial Zone change over the course of time as they march eastward across the planet."[1]

"The Great Red Spot shows its counterclockwise rotation, and the uneven distribution of its high haze is obvious. To the east (right) of the Red Spot, oval storms, like ball bearings, roll over and pass each other. Horizontal bands adjacent to each other move at different rates. Strings of small storms rotate around northern-hemisphere ovals."[1]

"Small, very bright features appear quickly and randomly in turbulent regions, candidates for lightning storms."[1]

"The smallest visible features at the equator are about 600 kilometers (about 370 miles) across."[1]

"The clip consists of 14 unevenly spaced timesteps, each a true color cylindrical projection of the complete circumference of Jupiter, from 60 degrees south to 60 degrees north. The maps are made by first assembling mosaics of six images taken by Cassini's narrow-angle camera in the same spectral filter over the course of one Jupiter rotation and, consequently, covering the whole planet. Three such global maps -- in red, green and blue filters -- are combined to make one color map showing Jupiter during one Jovian rotation. Fourteen such maps, spanning 24 Jovian rotations at uneven time intervals comprise the movie."[1]

The passage of time is accelerated by a factor of 600,000.


  1. 1.0 1.1 1.2 1.3 1.4 Sue Lavoie (28 December 2000). PIA02863: Planetwide Color Movie. Tucson, Arizona USA: NASA/JPL/University of Arizona. http://photojournal.jpl.nasa.gov/catalog/PIA02863. Retrieved 30 May 2013. 
Selected topic

The page "Portal:Jupiter/Topic/6" does not exist.

Selected astronomy

Water astronomy

Jupiter is imaged with the Stockholm Infrared Camera (SIRCA) in the H2O band. Credit: M. Gålfalk, G. Olofsson and H.-G. Florén, Nordic Observatory Telescope (NOT).

At center is a significant observation of Jupiter in the H2O band using the Stockholm Infrared Camera (SIRCA) on the Nordic Observatory Telescope (NOT).

The image clearly shows that water vapor is plentiful in the Jovian atmosphere.

Selected deity


Marduk and his dragon Mušḫuššu is from a Babylonian cylinder seal.[1] Credit: RuM.

~2800 b2k: The observation of Jupiter dates back to the Babylonian astronomers of the 7th or 8th century BC.[2] To the Babylonians, this object represented their god Marduk. They used the roughly 12-year orbit of this planet along the ecliptic to define the constellations of their zodiac.[3][4]

Marduk Sumerian: amar utu.k "calf of the sun; solar calf"; Greek Μαρδοχαῖος,[5]

"Marduk" is the Babylonian form of his name.[6]

The name Marduk was probably pronounced Marutuk.[7] The etymology of the name Marduk is conjectured as derived from amar-Utu ("bull calf of the sun god Utu").[6] The origin of Marduk's name may reflect an earlier genealogy, or have had cultural ties to the ancient city of Sippar (whose god was Utu, the sun god), dating back to the third millennium BC.[8]

By the Hammurabi period, Marduk had become astrologically associated with the planet Jupiter.[9]

Marduk's original character is obscure but he was later associated with water, vegetation, judgment, and magic.[10] His consort was the goddess Sarpanit.[11] He was also regarded as the son of Ea[12] (Sumerian Enki) and Damgalnuna (Damkina)[13] and the heir of Anu, but whatever special traits Marduk may have had were overshadowed by the political development through which the Euphrates valley passed and which led to people of the time imbuing him with traits belonging to gods who in an earlier period were recognized as the heads of the pantheon.[14]

Leonard W. King in The Seven Tablets of Creation (1902) included fragments of god lists which he considered essential for the reconstruction of the meaning of Marduk's name. Franz Bohl in his 1936 study of the fifty names also referred to King's list. Richard Litke (1958) noticed a similarity between Marduk's names in the An:Anum list and those of the Enuma elish, albeit in a different arrangement.

The connection between the An:Anum list and the list in Enuma Elish were established by Walther Sommerfeld (1982), who used the correspondence to argue for a Kassite period composition date of the Enuma elish, although the direct derivation of the Enuma elish list from the An:Anum one was disputed in a review by Wilfred Lambert (1984).[15]

Marduk prophesies that he will return once more to Babylon to a messianic new king, who will bring salvation to the city and who will wreak a terrible revenge on the Elamites. This king is understood to be Nebuchadnezzar I (Nabu-kudurri-uṣur I), 1125-1103 BC.[16]


  1. Willis, Roy (2012). World Mythology. New York: Metro Books. p. 62. ISBN 978-1-4351-4173-5. 
  2. A. Sachs (May 2, 1974). "Babylonian Observational Astronomy". Philosophical Transactions of the Royal Society of London (Royal Society of London) 276 (1257): 43–50 (see p. 44). doi:10.1098/rsta.1974.0008. 
  3. Eric Burgess (1982). By Jupiter: Odysseys to a Giant. New York: Columbia University Press. ISBN 0-231-05176-X. 
  4. Rogers, J. H. (1998). "Origins of the ancient constellations: I. The Mesopotamian traditions". Journal of the British Astronomical Association, 108: 9–28. 
  5. identified with Marduk by Heinrich Zimmeren (1862-1931), Stade's Zeitschrift 11, p. 161.
  6. 6.0 6.1 Helmer Ringgren, (1974) Religions of The Ancient Near East, Translated by John Sturdy, The Westminster Press, p. 66.
  7. Frymer-Kensky, Tikva (2005). Jones, Lindsay. ed. Marduk. Encyclopedia of religion. 8 (2 ed.). New York. pp. 5702–5703. ISBN 0-02-865741-1. 
  8. The Encyclopedia of Religion - Macmillan Library Reference USA - Vol. 9 - Page 201
  9. Jastrow, Jr., Morris (1911). Aspects of Religious Belief and Practice in Babylonia and Assyria, G.P. Putnam's Sons: New York and London. pp. 217-219.
  10. [John L. McKenzie, Dictionary of the Bible, Simon & Schuster, 1965 p 541.]
  11. Helmer Ringgren, (1974) Religions of The Ancient Near East, Translated by John Sturdy, The Westminster Press, p. 67.
  12. Arendzen, John (1908). Cosmogony, In: The Catholic Encyclopedia. Robert Appleton Company. http://www.newadvent.org/cathen/04405c.htm. Retrieved 26 March 2011. 
  13. C. Scott Littleton (2005). Gods, Goddesses and Mythology, Volume 6. Marshall Cavendish. p. 829. 
  14. Morris Jastrow (1911). Aspects of Religious Belief and Practice in Babylonia and Assyria. G. P. Putnam’s Sons. p. 38. 
  15. Andrea Seri, The Fifty Names of Marduk in Enuma elis, Journal of the American Oriental Society 126.4 (2006)
  16. Matthew Neujahr (2006). "Royal Ideology and Utopian Futures in the Akkadian Ex Eventu Prophecies". In Ehud Ben Zvi. Utopia and Dystopia in Prophetic Literature. Helsinki: The Finnish Exegetical Society, University of Helsinki. pp. 41–54. 

External links

Selected image
Jupiter X-ray Aurora Chandra.jpg

This image of Jupiter shows concentrations of auroral X-rays near the north and south magnetic poles. The Chandra X-ray Observatory accumulated X-ray counts from Jupiter for its entire 10-hour rotation on December 18, 2000. Credit: NASA/CXC/SWRI/G.R.Gladstone et al.

The Chandra X-ray Observatory accumulated X-ray counts from Jupiter for its entire 10-hour rotation on December 18, 2000. Note that X-rays from the entire globe of Jupiter are detected.

Selected meteor


This image of Jupiter is produced from a 2x2 mosaic of photos taken by the New Horizons Long Range Reconnaissance Imager (LORRI). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.{{free media}}

"This image of Jupiter is produced from a 2x2 mosaic of photos taken by the New Horizons Long Range Reconnaissance Imager (LORRI), and assembled by the LORRI team at the Johns Hopkins University Applied Physics Laboratory. The telescopic camera snapped the images during a 3-minute, 35-second span on February 10, when the spacecraft was 29 million kilometers (18 million miles) from Jupiter. At this distance, Jupiter's diameter was 1,015 LORRI pixels -- nearly filling the imager's entire (1,024-by-1,024 pixel) field of view. Features as small as 290 kilometers (180 miles) are visible."[1]

"Both the Great Red Spot and Little Red Spot are visible in the image, on the left and lower right, respectively. The apparent "storm" on the planet's right limb is a section of the south tropical zone that has been detached from the region to its west (or left) by a "disturbance"".[1]

"At the time LORRI took these images, New Horizons was 820 million kilometers (510 million miles) from home -- nearly 5½ times the distance between the Sun and Earth."[1]


  1. 1.0 1.1 1.2 Sue Lavoie (2 April 2007). PIA09243: Full Jupiter Mosaic. Pasadena, California USA: NASA/JPL. https://photojournal.jpl.nasa.gov/catalog/PIA09243. Retrieved 29 June 2018. 
Selected moon


This image shows two views of the trailing hemisphere of Jupiter's ice-covered satellite, Europa. The left view shows the approximate natural color appearance of Europa. Credit: NASA/Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V., Berlin, Germany.

The image is a composite of two views of Europa. The left view shows the approximate natural color appearance of Europa. The view on the right is a false-color composite version combining violet, green and infrared images to enhance color differences in the predominantly water-ice crust of Europa. Dark brown areas represent rocky material derived from the interior, implanted by impact, or from a combination of interior and exterior sources. Bright plains in the polar areas (top and bottom) are shown in tones of blue to distinguish possibly coarse-grained ice (dark blue) from fine-grained ice (light blue). Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long. The bright feature containing a central dark spot in the lower third of the image is a young impact crater some 50 kilometers (31 miles) in diameter. This crater has been provisionally named "Pwyll" for the Celtic god of the underworld. This image was taken on September 7, 1996, at a range of 677,000 kilometers (417,900 miles) by the solid state imaging television camera onboard the Galileo spacecraft during its second orbit around Jupiter.

Selected theory

Radiative dynamos

This is a diagram of the dynamo within Jupiter producing its axisymmetric dipole magnetic field. Credit: Robert MacDowall, Planetary Magnetospheres Laboratory, Code 695, GSFC, NASA.

"The interior of Jupiter is the seat of a strong dynamo that produces a surface magnetic field in the equatorial region with an intensity of ~ 4 Gauss. This strong magnetic field and Jupiter’s fast rotation (rotation period ~ 9 h 55 min) create a unique magnetosphere in the solar system which is known for its immense size (average subsolar magnetopause distance 45-100 RJ where 1 RJ = 71492 km is the radius of Jupiter) and fast rotation [...]. Jupiter’s magnetosphere differs from most other magnetospheres in the fact that it derives much of its plasma internally from Jupiter’s moon Io. The heavy plasma, consisting principally of various charge states of S and O, inflates the magnetosphere from the combined actions of centrifugal force and thermal pressure."[1]

In "the absence of an internal heavy plasma, the dipole field would balance the average dynamic pressure of the solar wind (0.08 nPa) at a distance of ~ 42 RJ in the subsolar region [...] the observed average magnetopause location of ~ 75 RJ [...] The heavy plasma is also responsible for generating an azimuthal current exceeding 160 MA in the equatorial region of Jupiter’s magnetosphere where it is confined to a thin current sheet (half thickness ~ 2 RJ in the dawn sector)."[1]

"The energization of plasma by various electrical fields as it diffuses inwards is responsible for the creation of radiation belts in the inner magnetosphere of Jupiter. It is believed that the radial diffusion is driven by the ionospheric dynamo fields produced by winds in Jupiter’s atmosphere"[1]

"In situ and remote observations of Io and its surroundings from Voyager showed that Io is the main source of plasma in Jupiter’s magnetosphere [...] "[1]

"It is estimated that upward of 6 × 1029 amu/s (~ 1 ton/s) of plasma mass is added to the magnetosphere by Io. The picked-up plasma consists mostly of various charged states of S and O and populates a torus region extending from a radial distance of ~ 5.2 RJ to ~ 10 RJ."[1]

"The next most important source of plasma in Jupiter’s magnetosphere is the solar wind whose source strength can be estimated by a consideration of the solar wind mass flux incident on Jupiter’s magnetopause and the fractional amount that makes it into the magnetosphere (< 1%). Such a calculation suggests that the solar wind source strength is < 100 kg/s (Hill et al. 1983) considerably lower than the Io source. Nevertheless, the number density of protons (as opposed to the mass density) may be comparable to the iogenic plasma number density in the middle and outer magnetospheres where the solar wind may be able to gain access to the magnetosphere."[1]

"The escape of ions (mainly H+ and H2+ ) from the ionosphere of Jupiter provides the next significant source of plasma in Jupiter’s magnetosphere. The ionospheric plasma escapes along field lines when the gravity of Jupiter is not able to contain the hot plasma (~ 10 eV and above). The escape however is not uniform and depends on the local photoelectron density, the temperature variations of the ionosphere with the solar zenith angle, other factors such as the auroral precipitation of ions and electrons and the ionospheric heating from Pedersen currents. In situ measurements show that in Io’s torus, protons contribute to less than 20% of total ion number density and constitute < 1% of mass suggesting that the ionosphere is not a major source of plasma in Jupiter’s magnetosphere. [The] ionospheric source strength [is] in the range of ~ 20 kg/s."[1]

The "surface sputtering of the three icy satellites by jovian plasma provides the last significant source of plasma in Jupiter’s magnetosphere. Because the icy moons lack extended atmospheres and the fluxes of the incident plasma are low at the locations of these moons, the total pickup of plasma from these satellites is estimated to be less than 20 kg/s based on the plasma sputtering rates provided".[1]

"Other minor constituents found in the torus [...] were Na+ (with an abundance of < 5%) and molecular ions SO+ and SO2+ (both with abundances of < 1% of the total). The average mass of a torus ion is ~ 20 and the average fractional charge on an ion is ~ 1.2 [...]. The bulk velocity of the plasma was found to be ~ 75 km/s, close to the corotational value."[1]


  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Krishan K. Khurana; Margaret G. Kivelson; Vytenis M. Vasyliunas; Norbert Krupp; Joachim Woch; Andreas Lagg; Barry H. Mauk; William S. Kurth (2004). Bagenal, F.. ed. The Configuration of Jupiter’s Magnetosphere, In: Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press. pp. 24. ISBN 0-521-81808-7. http://www.igpp.ucla.edu/people/mkivelson/Publications/279-Ch24.pdf. Retrieved 2014-03-29.