Portal:Jupiter
Infrareds




"Spectra from the Voyager I IRIS experiment confirm the existence of enhanced infrared emission near Jupiter's north magnetic pole in March 1979."[1] "Some species previously detected on Jupiter, including CH3D, C2H2, and C2H6, have been observed again near the pole. Newly discovered species, not previously observed on Jupiter, include C2H4, C3H4, and C6H6. All of these species except CH3D appear to have enhanced abundances at the north polar region with respect to midlatitudes."[1]
The image at third lower right is "of Jupiter taken in infrared light on the night of [August 17, 2008,] with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype instrument mounted on ESO's Very Large Telescope. This false color photo is the combination of a series of images taken over a time span of about 20 minutes, through three different filters (2, 2.14, and 2.16 microns). The image sharpening obtained is about 90 milli-arcseconds across the whole planetary disc, a real record on similar images taken from the ground. This corresponds to seeing details about 186 miles wide on the surface of the giant planet. The great red spot is not visible in this image as it was on the other side of the planet during the observations. The observations were done at infrared wavelengths where absorption due to hydrogen and methane is strong. This explains why the colors are different from how we usually see Jupiter in visible-light. This absorption means that light can be reflected back only from high-altitude hazes, and not from deeper clouds. These hazes lie in the very stable upper part of Jupiter's troposphere, where pressures are between 0.15 and 0.3 bar. Mixing is weak within this stable region, so tiny haze particles can survive for days to years, depending on their size and fall speed. Additionally, near the planet's poles, a higher stratospheric haze (light blue regions) is generated by interactions with particles trapped in Jupiter's intense magnetic field."[2]
The image at the top shows Jupiter in the near infrared. "Five spots -- one colored white, one blue, and three black are scattered across the upper half of the planet. Closer inspection by NASA's Hubble Space Telescope reveals that these spots are actually a rare alignment of three of Jupiter's largest moons -- Io, Ganymede, and Callisto -- across the planet's face. In this image, the telltale signatures of this alignment are the shadows [the three black circles] cast by the moons. Io's shadow is located just above center and to the left; Ganymede's on the planet's left edge; and Callisto's near the right edge. Only two of the moons, however, are visible in this image. Io is the white circle in the center of the image, and Ganymede is the blue circle at upper right. Callisto is out of the image and to the right. ... Jupiter appears in pastel colors in this photo because the observation was taken in near-infrared light. Astronomers combined images taken in three near-infrared wavelengths to make this color image. The photo shows sunlight reflected from Jupiter's clouds. In the near infrared, methane gas in Jupiter's atmosphere limits the penetration of sunlight, which causes clouds to appear in different colors depending on their altitude. Studying clouds in near-infrared light is very useful for scientists studying the layers of clouds that make up Jupiter's atmosphere. Yellow colors indicate high clouds; red colors lower clouds; and blue colors even lower clouds in Jupiter's atmosphere. The green color near the poles comes from a thin haze very high in the atmosphere. Ganymede's blue color comes from the absorption of water ice on its surface at longer wavelengths. Io's white color is from light reflected off bright sulfur compounds on the satellite's surface. ... In viewing this rare alignment, astronomers also tested a new imaging technique. To increase the sharpness of the near-infrared camera images, astronomers speeded up Hubble's tracking system so that Jupiter traveled through the telescope's field of view much faster than normal. This technique allowed scientists to take rapid-fire snapshots of the planet and its moons. They then combined the images into one single picture to show more details of the planet and its moons."[3]
On July 19, 2009, a new black spot about the size of Earth was discovered in Jupiter's southern hemisphere by an amateur astronomer. Thermal infrared analysis showed it was warm and spectroscopic methods detected ammonia. JPL scientists confirmed that another impact event on Jupiter had occurred, probably a small undiscovered comet or other icy body.[4][5][6]
"These images [at left] show the distribution of the organic molecule acetylene at the north and south poles of Jupiter, based on data obtained by NASA's Cassini spacecraft in early January 2001. It is the highest-resolution map of acetylene to date on Jupiter. The enhanced emission results both from the warmer temperatures in the auroral hot spots, and probably also from an enhanced abundance in these regions. The detection helps scientists understand the chemical interactions between sunlight and molecules in Jupiter's stratosphere."[7]
The second image down on the left shows Jupiter in an infrared band where the Great Red Spot (on the lower left) is almost unseen.
References
- ↑ 1.0 1.1 Sang J. Kim; John Caldwell; A.R. Rivolo; R. Wagener; Glenn S. Orton (November 1985). "Infrared polar brightening on Jupiter. III - Spectrometry from the Voyager 1 IRIS experiment". Icarus 64 (2): 233-48. doi:10.1016/0019-1035(85)90088-0. http://www.sciencedirect.com/science/article/pii/0019103585900880. Retrieved 2012-07-09.
- ↑ ESO/F. Marchis; M. Wong; E. Marchetti; P. Amico; S. Tordo (2 October 2008). Sharpening up Jupiter. ESO Santiago, Chile: ESO. http://www.eso.org/public/images/eso0833a/. Retrieved 11 July 2012.
- ↑ Phil Davis (3 May 2011). Triple Eclipse. National Aeronautics and Space Administration. http://solarsystem.nasa.gov/multimedia/display.cfm?Category=Planets&IM_ID=3083. Retrieved 20 July 2012.
- ↑ Mystery impact leaves Earth-sized mark on Jupiter. CNN. 21 July 2009. http://www.cnn.com/2009/TECH/space/07/21/jupiter.nasa.meteor.scar/index.html.
- ↑ Overbye, Dennis (22 July 2009). All Eyepieces on Jupiter After a Big Impact. New York Times. http://www.nytimes.com/2009/07/22/science/space/22jupiter.html?hpw.
- ↑ Amateur astronomer spots Earth-size scar on Jupiter, Guardian, July 21, 2009
- ↑ Sue Lavoie01 (31 December 2010). Acetylene at Jupiter's North and South Poles. Ministry of Space Exploration. http://minsex.blogspot.com/2010_12_01_archive.html. Retrieved 6 February 2013.
The page "Portal:Jupiter/Topic/7" does not exist.
Hydrocarbon astronomy

"Spectra from the Voyager I IRIS experiment confirm the existence of enhanced infrared emission near Jupiter's north magnetic pole in March 1979."[1]
"Some species previously detected on Jupiter, including CH3D, C2H2, and C2H6, have been observed again near the pole. Newly discovered species, not previously observed on Jupiter, include C2H4, C3H4, and C6H6. All of these species except CH3D appear to have enhanced abundances at the north polar region with respect to midlatitudes."[1]
References
- ↑ 1.0 1.1 Sang J. Kim, John Caldwell, A.R. Rivolo, R. Wagener, Glenn S. Orton (November 1985). "Infrared polar brightening on Jupiter. III - Spectrometry from the Voyager 1 IRIS experiment". Icarus 64 (2): 233-48. doi:10.1016/0019-1035(85)90088-0. http://www.sciencedirect.com/science/article/pii/0019103585900880. Retrieved 2012-07-09.
Jupiter

A dominant line of scholarship has held that Rome lacked a body of myths in its earliest period, or that this original mythology has been irrecoverably obscured by the influence of the Greek narrative tradition.[1]
Jupiter is depicted as the twin of Juno in a statue at Praeneste that showed them nursed by Fortuna Primigenia.[2] An inscription that is also from Praeneste, however, says that Fortuna Primigenia was Jupiter's first-born child.[3] Jacqueline Champeaux sees this contradiction as the result of successive different cultural and religious phases, in which a wave of influence coming from the Hellenic world made Fortuna the daughter of Jupiter.[4] The childhood of Zeus is an important theme in Greek religion, art and literature, but there are only rare (or dubious) depictions of Jupiter as a child.[5]
References
- ↑ Hendrik Wagenvoort, "Characteristic Traits of Ancient Roman Religion," in Pietas: Selected Studies in Roman Religion (Brill, 1980), p. 241, ascribing the view that there was no early Roman mythology to Walter Friedrich Otto and his school.
- ↑ Described by Cicero, De divinatione 2.85, as cited by R. Joy Littlewood, "Fortune," in The Oxford Encyclopedia of Ancient Greece and Rome (Oxford University Press, 2010), vol. 1, p. 212.
- ↑ Corpus Inscriptionum Latinarum (CIL) 1.60, as cited by Littlewood, "Fortune," p. 212.
- ↑ J. Champeaux Fortuna. Le culte de la Fortune à Rome et dans le monde romain. I Fortuna dans la religion archaïque 1982 Rome: Publications de l'Ecole Française de Rome; as reviewed by John Scheid in Revue de l' histoire des religions 1986 203 1: pp. 67–68 (Comptes rendus).
- ↑ William Warde Fowler, The Roman Festivals of the Period of the Republic (London, 1908), pp. 223–225.
This map shows the distribution of water in the stratosphere of Jupiter as measured with the Herschel space observatory. Credit: Water map: ESA/Herschel/T. Cavali et al.; Jupiter image: NASA/ESA/Reta Beebe (New Mexico State University).
Jet streams
"See a jet stream speeding through Jupiter’s atmosphere in this new view taken by NASA’s Juno spacecraft. The jet stream, called Jet N2, was captured along the dynamic northern temperate belts of the gas giant planet. It is the white stream visible from top left to bottom right in the image."[1]
"The color-enhanced image was taken at 10:34 p.m. PST on May 23 (1:34 a.m. EST on May 24), as Juno performed its 13th close flyby of Jupiter. At the time the image was taken, the spacecraft was about 3,516 miles (5,659 kilometers) from the tops of the clouds of the planet at a northern latitude of 32.9 degrees."[1]
References
- ↑ 1.0 1.1 Gerald Eichstädt and Seán Doran (1 June 2018). Jovian Jet Stream. Washington, DC USA: NASA. https://solarsystem.nasa.gov/resources/894/jovian-jet-stream/?category=planets_jupiter. Retrieved 29 June 2018.
Himalia

Mean orbit radius of Himalia around Jupiter is 11,460,000 km[1]
Period is 250.56 d (0.704 a)[1]
"Unfortunately the numeration of Jupiter's satellites is now in precisely the same confusion as that of Saturn's system was before the numbers were abandoned and names substituted. A similar course would seem to be advisable here; the designation V for the inner satellite [Amalthea] was tolerated for a time, as it was considered to be in a class by itself; but it has now got companions, so that this subterfuge disappears. The substitution of names for numerals is certainly more poetic."[2]
The moon was sometimes called Hestia, after the Hestia the Greek goddess, from 1955 to 1975.[3]
At a distance of about 11.5 million km from Jupiter, Himalia takes about 251 Earth days to complete one orbit.[4] It is the largest member of the Himalia group, the moons orbiting between 11.4 and 13 million kilometres from Jupiter at an inclination of about 27.5°.[5] The orbital elements are as of January 2000.[1]
References
- ↑ 1.0 1.1 1.2 Jacobson, R. A. (2000). "The orbits of outer Jovian satellites". Astronomical Journal 120 (5): 2679–2686. doi:10.1086/316817. https://trs.jpl.nasa.gov/bitstream/2014/15175/1/00-1187.pdf.
- ↑ Crommelin, A. C. D. (March 10, 1905). "Provisional Elements of Jupiter's Satellite VI". Monthly Notices of the Royal Astronomical Society 65 (5): 524–527. doi:10.1093/mnras/65.5.524.
- ↑ Payne-Gaposchkin, Cecilia; Katherine Haramundanis (1970). Introduction to Astronomy. Englewood Cliffs, N.J.: Prentice-Hall. ISBN 0-13-478107-4.
- ↑ "Himalia". Solar System Exploration. NASA. December 5, 2017. Retrieved 2018-09-09.
- ↑ Jewitt, David C.; Sheppard, Scott; Porco, Carolyn (2004). "Jupiter's Outer Satellites and Trojans". In Bagenal, F.. Jupiter: The planet, Satellites and Magnetosphere. Cambridge University Press. http://www.dtm.ciw.edu/users/sheppard/pub/Sheppard04JupChapter.pdf.
Sun-Jupiter binary
The Sun-Jupiter binary may serve to establish an upper limit for interstellar cometary capture when three bodies are extremely unequal in mass, such as the Sun, Jupiter, and a third body (potential comet) at a large distance from the binary.[1] The basic problem with a capture scenario even from passage through “a cloud of some 10 million years, or from a medium enveloping the solar system, is the low relative velocity [~0.5 km s-1] required between the solar system and the cometary medium.”[2] The capture of interstellar comets by Saturn, Uranus, and Neptune together cause about as many captures as Jupiter alone.[2]
In a mechanism of chaos assisted capture (CAC), particles such as comets or those of sizes in the range of the irregular moons of Jupiter become entangled in chaotic layers which temporarily “extend the lifetimes of [these] particles within the Hill sphere, thereby providing the breathing space necessary for relatively weak dissipative forces (eg gas-drag) to effect permanent capture.”[3] These objects of the Sun-Jupiter binary system may localize near Jupiter and become satellites, specifically the irregular moons.[3]
References
- ↑ MJ Valtonen (February 1983). "On the capture of comets into the Solar System". The Observatory 103 (2): 1-4.
- ↑ 2.0 2.1 M. J. Valtonen; K. A. Innanen (April 1982). "The capture of interstellar comets". The Astrophysical Journal 255 (4): 307-15. doi:10.1086/159830.
- ↑ 3.0 3.1 Sergey A. Astakhov and David Farrelly (November 2004). "Capture and escape in the elliptic restricted three?body problem". Monthly Notices of the Royal Astronomical Society 354 (4): 971-9. doi:10.1111/j.1365-2966.2004.08280.x. http://arxiv.org/pdf/astro-ph/0408271. Retrieved 2012-03-12.