Portal:Jupiter/Astronomy

From Wikiversity
Jump to navigation Jump to search
Selected Astronomy


Hydrocarbon astronomy

These images show the distribution of acetylene around the north and south poles of Jupiter. Credit: NASA/JPL/GSFC.

"Spectra from the Voyager I IRIS experiment confirm the existence of enhanced infrared emission near Jupiter's north magnetic pole in March 1979."[1]

"Some species previously detected on Jupiter, including CH3D, C2H2, and C2H6, have been observed again near the pole. Newly discovered species, not previously observed on Jupiter, include C2H4, C3H4, and C6H6. All of these species except CH3D appear to have enhanced abundances at the north polar region with respect to midlatitudes."[1]

References

  1. 1.0 1.1 Sang J. Kim, John Caldwell, A.R. Rivolo, R. Wagener, Glenn S. Orton (November 1985). "Infrared polar brightening on Jupiter. III - Spectrometry from the Voyager 1 IRIS experiment". Icarus 64 (2): 233-48. doi:10.1016/0019-1035(85)90088-0. http://www.sciencedirect.com/science/article/pii/0019103585900880. Retrieved 2012-07-09. 



Water astronomy

Jupiter is imaged with the Stockholm Infrared Camera (SIRCA) in the H2O band. Credit: M. Gålfalk, G. Olofsson and H.-G. Florén, Nordic Observatory Telescope (NOT).

At center is a significant observation of Jupiter in the H2O band using the Stockholm Infrared Camera (SIRCA) on the Nordic Observatory Telescope (NOT).

The image clearly shows that water vapor is plentiful in the Jovian atmosphere.




Ice astronomy

Photo shows high-flying white clouds above Jupiter. Credit: NASA/SWRI/MSSS/Gerald Eichstädt/Seán Doran.{{fairuse}}

"The white clouds [in the center image], which get up to 50 miles (80 kilometers) wide or so, are high up in Jupiter's atmosphere — so high that they're very cold, and the material they shed is therefore almost certainly frozen."[1]

"It's snowing on Jupiter, and we're seeing how it works."[1]

"It's probably mostly ammonia ice, but there may be water ice mixed into it, so it's not exactly like the snow that we have [on Earth]. And I was using my imagination when I said it was snowing there — it could be hail."[1]

"This photo taken by NASA’s Juno spacecraft on May 19, 2017, at 5:50 UTC from an altitude of 5,500 miles (8,900 kilometers) shows high-flying white clouds composed of water ice and/or ammonia ice. In some areas, these clouds appear to form squall lines — narrow bands of high winds and storms associated with a cold front."[1]

References

  1. 1.0 1.1 1.2 1.3 Scott Bolton (30 May 2017). 'It's Snowing on Jupiter': Stunning Photos Show Clouds High in Gas Giant's Skies. Space.com. Retrieved 2017-06-04.



Aurora astronomy

This image of Jupiter shows concentrations of auroral X-rays near the north and south magnetic poles. The Chandra X-ray Observatory accumulated X-ray counts from Jupiter for its entire 10-hour rotation on December 18, 2000. Credit: NASA/CXC/SWRI/G.R.Gladstone et al.
Aurora at Jupiter's north pole is seen in ultraviolet light by the Hubble Space Telescope. Credit: John T. Clarke (U. Michigan), ESA, NASA.

The "image of Jupiter shows concentrations of auroral X-rays near the north and south magnetic poles."[1] The Chandra X-ray Observatory accumulated X-ray counts from Jupiter for its entire 10-hour rotation on December 18, 2000. Note that X-rays from the entire globe of Jupiter are detected.

Second is an ultraviolet image of aurora at Jupiter's north pole by the Hubble Space Telescope.

References

  1. NASA/CXC/SWRI/G.R.Gladstone; et al. (February 27, 2002). Jupiter Hot Spot Makes Trouble For Theory. Cambridge, Massachusetts: Harvard-Smithsonian Center for Astrophysics. Retrieved 2012-07-11. Explicit use of et al. in: |author= (help)



Planetary astronomy

These 12 images were taken between 2003 and 2015. Credit: Damian Peach.
Images in the visible-light and infrared parts of the spectrum highlight the massive changes roiling the atmosphere of Jupiter. Credit: A. Wesley, A. Kazemoto and C. Go, NASA/IRTF/JPL-Caltech/NAOJ.

"Jupiter takes 12 years to make one trip around the Sun. These 12 images [on top] were taken between 2003 and 2015. At far left we see Jupiter in 2003, and the years proceed counterclockwise. The 2015 view is immediately above 2003."[1]

"Jupiter’s axial tilt is just 3° or nearly straight up and down, so seasons don’t exist. One part of the Jovian year is much the same as another. Still, as you can plainly see, the solar system’s biggest planet has plenty of weather."[2]

"Just look at the Great Red Spot or GRS. Through about 2008, it’s relatively large and pale but suddenly darkens in 2010 at the same time the South Equatorial Cloud Belt (the wide stripe of clouds above the Spot) disappears. If you look closely at the Spot from year to year, you’ll see another big change — it’s shrinking! The GRS has been dwindling for several decades, but it’s amazing how obvious the difference is in only a dozen years."[2]

"The planet gives off 1.6 times as much energy as it get from the Sun."[2]

"Fun to think that the light we see from Jupiter is reflected sunlight, but if we could view it with heat-sensing, infrared eyes, it would glow like an ember."[2]

"Images [second down] in the visible-light and infrared parts of the spectrum highlight the massive changes roiling the atmosphere of Jupiter. In the visible-light images on the left that were obtained by amateur astronomers, Jupiter can be seen "losing" a brown-colored belt south of the equator called the South Equatorial Belt (SEB) from 2009 to 2010. This belt returned in 2011 and was still present in 2012. From 2011 to January 2012, a belt north of the equator known as the North Equatorial Belt (NEB) can be seen to be thinning out. In 2011, it whitened to an extent not seen in over a century. In March of 2012, after the last picture in this series was taken, the northern belt began to darken again."[3]

"Scientists compared the visible-light data to data obtained in infrared wavelengths (middle and right columns), which show progressively deeper levels in the Jovian atmosphere. The infrared images were obtained from NASA's Infrared Telescope Facility on Mauna Kea, Hawaii, except for the 2011 image in the 8.7-micron wavelength (right column, third from the top), which was taken by the Subaru Telescope, also in Mauna Kea, Hawaii. Those data showed a thickening of the deeper cloud decks in the northern belt during that time, and a partial thickening of the upper cloud deck. The South Equatorial Belt saw both levels of clouds thicken and then clear up. The infrared data also resolved brown elongated features in the whitened area of the North Equatorial Belt known as "brown barges" as distinct features and revealed them to be regions clearer of clouds and probably characterized by downwelling, dry air."[3]

"Also visible in the infrared observations are a series of blue-gray features that are the clearest and driest regions on the planet and show up as apparent hotspots in the infrared view because they reveal the radiation emerging from a very deep layer of Jupiter's atmosphere. Those hotspots disappeared from 2010 to 2011, but had reestablished themselves by June of this year, coincident with the whitening and re-darkening of the North Equatorial Belt."[3]

References

  1. Damian Peach (23 December 2015). Once Around The Sun With Jupiter. Universe Today. Retrieved 2017-02-12.
  2. 2.0 2.1 2.2 2.3 Bob King (23 December 2015). Once Around The Sun With Jupiter. Universe Today. Retrieved 2017-02-12.
  3. 3.0 3.1 3.2 A. Wesley, A. Kazemoto and C. Go (March 2012). Global Upheaval at Jupiter. SWRI. Retrieved 2017-02-12.



Jupiter systems

Jupiter rings are photographed by Voyager 2 (false color). Credit: NASA, Voyager 2.
Center is a Voyager 2 image of Jupiter's rings.