Web Science/Part2: Emerging Web Properties/Generative Models for the Web/Sampling from a probability distribution

From Wikiversity
Jump to: navigation, search

Sampling from a probability distribution

Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Learning-goals.svg

Learning goals

  1. Understand how to sample values from an arbitrary probability distribution
  2. Have seen yet another application of the cumulative distribution function
  3. Understand that sampling from a distribution is just a coordinate transformation of the uniform distribution
Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Video.svg

Video

Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Script.svg

Script

Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Quiz.svg

Quiz

what does our sampling process make sure?

the sampled values will most likely follow the given probability distribution
the sampled values will certainly follow the given probability distribution
the sampled values are not biased but are uniformly distributed
the value of the Kolmogorov Smirnov test for the sampled values and the original distribution should be smaller the more values are sampled
the value of the Kolmogorov Smirnov test for the sampled values and the original distribution should be bigger the more values are sampled


Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Further-readings.svg

Further reading

  1. tba
Wikiversity-Mooc-Icon-Discussion.svg

Discussion