Web Science/Part2: Emerging Web Properties/Generative Models for the Web/Evaluating a generative model

From Wikiversity
Jump to: navigation, search

Evaluating a generative model

Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Learning-goals.svg

Learning goals

  1. See that it makes sense to compare statistics
  2. Understand that comparing statistics is not a well defined task
  3. Be aware of the fact that very different models could lead to the same statistics
Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Video.svg

Video

Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Script.svg

Script

The slide deck can be found at File:Evaluating-a-generative-model.pdf

Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Quiz.svg

Quiz

What is true if the statistics of a generative Model match the statistics of the descriptive model?

The generated data can still be very different from the observed data.
The generated model is a perfect match of the observed data
There could be other statistics which we haven't looked at that might not match.
The model parameters of the generative model could give some reason why we can observe something
One should try to decrease the number of model parameters


Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Further-readings.svg

Further reading

  1. tba
Wikiversity-Mooc-Icon-Discussion.svg

Discussion