Web Science/Part2: Emerging Web Properties/Generative Models for the Web/Pittfalls when increasing the number of model parameters

From Wikiversity
Jump to: navigation, search

Pittfalls when increasing the number of model parameters

Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Learning-goals.svg

Learning goals

  1. See that one can always increase the model parameters
  2. Know that increasing model parameters often yields a more accurate model
  3. Be aware of the bigram and mixed models as examples for our generative processes
Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Video.svg

Video

Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Quiz.svg

Quiz

1 Increasing the number of Model parameters often yields more accurate generative Models. Why should one be careful to do so?

more model parameter always lead to a worse complexity class of the Algorithm
when a certain amount of parameters is reached one might not get an interesting insight from the parameter set
we are aiming for simplicity of our models.

2 Which of the following rule of thumbs is most likely true?

increasing the number of model parameters has a good chance to create a generative model whose statistics better match the observed data
decreasing the number of model parameters leads to simpler models
doubling the amount of model parameters will decrease the error of the model by 50%
doubling the amount of model parameters will increase the error of the model by 50%


Wikiversity-Mooc-Icon-Edit.svg
Wikiversity-Mooc-Icon-Ask.svg
Wikiversity-Mooc-Icon-Further-readings.svg

Further reading

  1. tba
Wikiversity-Mooc-Icon-Discussion.svg

Discussion