WikiJournal Preprints/Physiological Challenges in Long Duration Space Travel: Insights into Future Mars Exploration

From Wikiversity
Jump to navigation Jump to search

WikiJournal Preprints
Open access • Publication charge free • Public peer review

WikiJournal User Group is a publishing group of open-access, free-to-publish, Wikipedia-integrated academic journals. <seo title=" Wikiversity Journal User Group, WikiJournal Free to publish, Open access, Open-access, Non-profit, online journal, Public peer review "/>

<meta name='citation_doi' value=>

Article information

Author: Sheel Patel[a][i] 

See author information ▼
  1. Deakin University - School of Medicine
  1. s222333618@deakin.edu.au

Abstract

This comprehensive review focuses on the physiological challenges faced by astronauts during prolonged space travel, with a specific emphasis on upcoming Mars exploration. The article examines potential health issues across organ systems, addressing cardiovascular adaptations, musculoskeletal concerns, neurological adjustments, respiratory challenges, gastrointestinal impacts, and immunological vulnerabilities. To counteract cardiovascular deconditioning, tailored exercise regimens and advanced medical interventions are crucial. Innovative countermeasures, such as resistive exercise devices, are needed to mitigate muscle atrophy and bone density loss. Neurological adaptations and cognitive effects must be addressed through ongoing research and technological innovations. Respiratory health demands continuous monitoring and robust life support systems. The gastrointestinal system requires space-compatible diets, while immunological vulnerabilities necessitate advanced vaccination strategies. This comprehensive exploration contributes essential insights for the successful execution of Mars missions, emphasizing the importance of tailored interventions and ongoing research.


Introduction

[edit | edit source]

The imminent prospect of Mars exploration necessitates a rigorous examination of the physiological ramifications associated with extended space missions. The intrinsic adaptability of the human body to Earth's environment becomes a focal point, given the potential repercussions of prolonged exposure to the unique challenges posed by space. This article meticulously scrutinizes the prospective health implications on various organ systems during the arduous journey to and from Mars.

Cardiovascular System

[edit | edit source]

The cardiovascular system emerges as a principal area of concern in the context of long-term space travel.[1] The microgravity conditions prevalent in space induce discernible structural and functional alterations within the cardiac framework.[2] Fluid shifts, a consequence of diminished gravitational influence, manifest as perturbations in blood volume and distribution.[3] Cumulative evidence underscores the likelihood of cardiovascular de-conditioning during extended microgravity exposure, predisposing astronauts to orthostatic intolerance upon terrestrial re-entry.[4] Addressing these concerns mandates the implementation of tailored exercise regimens and sophisticated medical interventions to preserve cardiovascular homeostasis throughout Mars missions.[5]

Musculoskeletal System

[edit | edit source]

Profound challenges confront the musculoskeletal system amidst the protracted duration of space missions. Microgravity-induced muscle atrophy and bone density diminution, resultant from the absence of weight-bearing stimuli, engender substantial risks for astronauts undergoing prolonged periods of reduced gravity.[6][7] Mitigating these deleterious effects necessitates the strategic deployment of innovative countermeasures, including resistive exercise modalities and specialized training protocols.[8][9] The imperative lies in preventing severe musculoskeletal degradation, ensuring astronauts maintain functional capacity upon alighting on the Martian surface.[10][11]

Neurological System

[edit | edit source]

The neurological domain assumes significance in the panorama of space exploration, given the intricate interplay of sensory input alteration and potential cognitive effects. Microgravity conditions exert discernable modifications in brain structure and function, imparting implications on spatial orientation, motor skills, and cognitive acuity.[12][13] These neurological adaptations bear relevance to mission-critical tasks on Mars. Robust research endeavors and technological innovations become imperative to comprehend and ameliorate these effects, thereby ensuring sustained cognitive prowess among astronauts during their interplanetary odyssey and habitation on Mars.[14][15]

Respiratory System

[edit | edit source]

The respiratory milieu does not remain impervious to the rigors of space travel. Microgravity-induced fluid shifts and alterations in respiratory mechanics impart discernable changes to pulmonary function.[16][17] The constrained spatial confines and controlled atmospheric conditions within spacecrafts pose potential threats to respiratory health.[18] (Baranov et al., 2022) Implementation of advanced life support systems and continuous monitoring of air quality emerge as indispensable measures to safeguard the respiratory well-being of astronauts during transit to Mars and the ensuing prolonged sojourn.[18]

Gastrointestinal System

[edit | edit source]

Long-term spaceflight casts its influence upon the gastrointestinal system, giving rise to nuanced challenges, including altered nutrient absorption, perturbations in gut microbiota, and potential gastrointestinal discomfort.[19][20] The preservation of optimal nutrition assumes paramount significance in sustaining astronaut health and performance. Development of space-compatible dietary regimens and supplements, coupled with an enhanced understanding of the impact of space travel on gastrointestinal homeostasis, becomes imperative for ensuring the holistic well-being of astronauts during their Martian missions.[21]

Immunological System

[edit | edit source]

The immunological system, a linchpin of human defense mechanisms, confronts heightened vulnerabilities during space travel. Microgravity-induced stressors, coupled with radiation exposure and the constraints of confined living conditions, conspire to compromise the robustness of astronauts' immune function.[22][23] Mitigating this vulnerability mandates the establishment of comprehensive medical countermeasures, including advanced vaccination strategies and antimicrobial interventions. Safeguarding astronauts against infectious agents and fortifying their immune resilience stands as an imperative prerequisite for the triumphant execution of Mars missions.[24][25]

Conclusions

[edit | edit source]

As humanity stands on the cusp of interplanetary exploration, meticulous consideration of the physiological challenges inherent in long-term space travel becomes indispensable. Progress in medical science, coupled with the integration of innovative technologies and an exhaustive comprehension of the effects on diverse organ systems, is imperative to ensure the sustained well-being and optimal performance of astronauts embarking on the interplanetary trajectory. A proactive approach to address these health challenges lays the foundation for a safer and more sustainable era of human exploration beyond Earth's confines.

References

[edit | edit source]
  1. Scott, Jessica M.; Stoudemire, Jana; Dolan, Lianne; Downs, Meghan (2022-03-18). "Leveraging Spaceflight to Advance Cardiovascular Research on Earth". Circulation Research 130 (6): 942–957. doi:10.1161/CIRCRESAHA.121.319843. ISSN 0009-7330. PMID 35298305. PMC PMC8985452. https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.121.319843. 
  2. Gallo, Caterina; Ridolfi, Luca; Scarsoglio, Stefania (2020-10-01). "Cardiovascular deconditioning during long-term spaceflight through multiscale modeling". npj Microgravity 6 (1). doi:10.1038/s41526-020-00117-5. ISSN 2373-8065. PMID 33083524. PMC PMC7529778. https://www.nature.com/articles/s41526-020-00117-5. 
  3. Jirak, Peter; Mirna, Moritz; Rezar, Richard; Motloch, Lukas J; Lichtenauer, Michael; Jordan, Jens; Binneboessel, Stephan; Tank, Jens et al. (2022-08-05). "How spaceflight challenges human cardiovascular health". European Journal of Preventive Cardiology 29 (10): 1399–1411. doi:10.1093/eurjpc/zwac029. ISSN 2047-4873. https://academic.oup.com/eurjpc/article/29/10/1399/6527203. 
  4. Robin, Adrien; Wang, Linjie; Custaud, Marc-Antoine; Liu, Jiexin; Yuan, Min; Li, Zhili; Lloret, Jean-Christophe; Liu, Shujuan et al. (2022-08-31). "Running vs. resistance exercise to counteract deconditioning induced by 90-day head-down bedrest". Frontiers in Physiology 13. doi:10.3389/fphys.2022.902983. ISSN 1664-042X. PMID 36117704. PMC PMC9473647. https://www.frontiersin.org/articles/10.3389/fphys.2022.902983/full. 
  5. Kumar, Akhilesh; Tahimic, Candice G. T.; Almeida, Eduardo A. C.; Globus, Ruth K. (2021-08-23). "Spaceflight Modulates the Expression of Key Oxidative Stress and Cell Cycle Related Genes in Heart". International Journal of Molecular Sciences 22 (16): 9088. doi:10.3390/ijms22169088. ISSN 1422-0067. PMID 34445793. PMC PMC8396460. https://www.mdpi.com/1422-0067/22/16/9088. 
  6. Bagherian, A.; Baghani, M.; George, D.; Rémond, Y.; Chappard, C.; Patlazhan, S.; Baniassadi, M. (2020-05). "A novel numerical model for the prediction of patient-dependent bone density loss in microgravity based on micro-CT images". Continuum Mechanics and Thermodynamics 32 (3): 927–943. doi:10.1007/s00161-019-00798-8. ISSN 0935-1175. http://link.springer.com/10.1007/s00161-019-00798-8. 
  7. Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya (2015-04). "Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment". Life Sciences in Space Research 5: 1–5. doi:10.1016/j.lssr.2015.02.001. PMID 25821722. PMC PMC4374360. https://linkinghub.elsevier.com/retrieve/pii/S2214552415000152. 
  8. Shiba, Naoto; Matsuse, Hiroo; Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa et al. (2015-08-21). Goswami, Nandu. ed. "Electrically Stimulated Antagonist Muscle Contraction Increased Muscle Mass and Bone Mineral Density of One Astronaut - Initial Verification on the International Space Station". PLOS ONE 10 (8): e0134736. doi:10.1371/journal.pone.0134736. ISSN 1932-6203. PMID 26296204. PMC PMC4546678. https://dx.plos.org/10.1371/journal.pone.0134736. 
  9. Tominari, Tsukasa; Ichimaru, Ryota; Taniguchi, Keita; Yumoto, Akane; Shirakawa, Masaki; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko et al. (2019-04-29). "Hypergravity and microgravity exhibited reversal effects on the bone and muscle mass in mice". Scientific Reports 9 (1). doi:10.1038/s41598-019-42829-z. ISSN 2045-2322. PMID 31036903. PMC PMC6488638. https://www.nature.com/articles/s41598-019-42829-z. 
  10. Buchanan, Paul (1987-05-01). Bone and muscle - The structural system in long duration space missions (in en). https://ntrs.nasa.gov/citations/19870055396. 
  11. Schwartz, Robert J. (1997-01-01). The Role of GH/IGF-I Axis in Muscle Homeostasis During Weightlessness (in en). https://ntrs.nasa.gov/citations/19980000279. 
  12. Hupfeld, K.E.; McGregor, H.R.; Reuter-Lorenz, P.A.; Seidler, R.D. (2021-03). "Microgravity effects on the human brain and behavior: Dysfunction and adaptive plasticity". Neuroscience & Biobehavioral Reviews 122: 176–189. doi:10.1016/j.neubiorev.2020.11.017. PMID 33454290. PMC PMC9650717. https://linkinghub.elsevier.com/retrieve/pii/S0149763420306539. 
  13. Buoite Stella, Alex; Ajčević, Miloš; Furlanis, Giovanni; Manganotti, Paolo (2021-02). "Neurophysiological adaptations to spaceflight and simulated microgravity". Clinical Neurophysiology 132 (2): 498–504. doi:10.1016/j.clinph.2020.11.033. https://linkinghub.elsevier.com/retrieve/pii/S1388245720305976. 
  14. Scarsoglio, Stefania; Fois, Matteo; Ridolfi, Luca (2023-10). "Increased hemodynamic pulsatility in the cerebral microcirculation during parabolic flight-induced microgravity: A computational investigation". Acta Astronautica 211: 344–352. doi:10.1016/j.actaastro.2023.06.018. https://linkinghub.elsevier.com/retrieve/pii/S009457652300317X. 
  15. Nday, ChristianeM; Frantzidis, Christos; Jackson, Graham; Bamidis, Panagiotis; Kourtidou-Papadeli, Chrysoula (2019). "Neurophysiological changes in simulated microgravity: An animal model". Neurology India 67 (8): 221. doi:10.4103/0028-3886.259128. ISSN 0028-3886. https://journals.lww.com/10.4103/0028-3886.259128. 
  16. Stepanek, Jan; Blue, Rebecca S.; Connolly, Desmond (2023-10). "Pulmonary Function in Human Spaceflight". Seminars in Respiratory and Critical Care Medicine 44 (05): 696–704. doi:10.1055/s-0043-1770064. ISSN 1069-3424. http://www.thieme-connect.de/DOI/DOI?10.1055/s-0043-1770064. 
  17. Prisk, G Kim (2019-09). "Pulmonary challenges of prolonged journeys to space: taking your lungs to the moon". Medical Journal of Australia 211 (6): 271–276. doi:10.5694/mja2.50312. ISSN 0025-729X. https://onlinelibrary.wiley.com/doi/10.5694/mja2.50312. 
  18. 18.0 18.1 Yaqub, Farhat (2015-01). "Space travel: medicine in extremes". The Lancet Respiratory Medicine 3 (1): 20–21. doi:10.1016/S2213-2600(14)70192-4. https://linkinghub.elsevier.com/retrieve/pii/S2213260014701924. 
  19. Bharindwal, Sahaj; Goswami, Nidhi; Jha, Pamela; Pandey, Siddharth; Jobby, Renitta (2023-03-08). "Prospective Use of Probiotics to Maintain Astronaut Health during Spaceflight". Life 13 (3): 727. doi:10.3390/life13030727. ISSN 2075-1729. PMID 36983881. PMC PMC10058446. https://www.mdpi.com/2075-1729/13/3/727. 
  20. Hao, Zikai; Meng, Chen; Li, Leyuan; Feng, Siyuan; Zhu, Yinzhen; Yang, Jianlou; Han, Liangzhe; Sun, Leilei et al. (2023-04-24). "Positive mood-related gut microbiota in a long-term closed environment: a multiomics study based on the “Lunar Palace 365” experiment". Microbiome 11 (1). doi:10.1186/s40168-023-01506-0. ISSN 2049-2618. PMID 37095530. PMC PMC10124008. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-023-01506-0. 
  21. Turroni, Silvia; Magnani, Marciane; Kc, Pukar; Lesnik, Philippe; Vidal, Hubert; Heer, Martina (2020-09-08). "Gut Microbiome and Space Travelers’ Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions". Frontiers in Physiology 11. doi:10.3389/fphys.2020.553929. ISSN 1664-042X. PMID 33013480. PMC PMC7505921. https://www.frontiersin.org/article/10.3389/fphys.2020.553929/full. 
  22. Jacob, Pauline; Oertlin, Christian; Baselet, Bjorn; Westerberg, Lisa S.; Frippiat, Jean-Pol; Baatout, Sarah (2023-06-28). "Next generation of astronauts or ESA astronaut 2.0 concept and spotlight on immunity". npj Microgravity 9 (1). doi:10.1038/s41526-023-00294-z. ISSN 2373-8065. PMID 37380641. PMC PMC10307948. https://www.nature.com/articles/s41526-023-00294-z. 
  23. Buchanan, Paul (1987-05-01). Bone and muscle - The structural system in long duration space missions (in en). https://ntrs.nasa.gov/citations/19870055396. 
  24. Akiyama, Taishin; Horie, Kenta; Hinoi, Eiichi; Hiraiwa, Manami; Kato, Akihisa; Maekawa, Yoichi; Takahashi, Akihisa; Furukawa, Satoshi (2020-05-07). "How does spaceflight affect the acquired immune system?". npj Microgravity 6 (1). doi:10.1038/s41526-020-0104-1. ISSN 2373-8065. PMID 32411817. PMC PMC7206142. https://www.nature.com/articles/s41526-020-0104-1. 
  25. Jeandel, Jeremy; Fonte, Coralie; Calcagno, Gaetano; Bonnefoy, Julie; Ghislin, Stéphanie; Kaminski, Sandra; Frippiat, Jean-Pol (2019-09-25). Spaceflight-Associated Immune System Modifications (in en). IntechOpen. doi:10.5772/intechopen.88880. https://www.intechopen.com/online-first/spaceflight-associated-immune-system-modifications.