# QB/d cp2.gaussC

< QB Play media
8 min video

I just made a video that is available in three places:
3-c:File:Open Quizbank Proposal First.webm
Lake Campus Symposium: Creating a bank so students won't break the bank
https://bitbucket.org/Guy_vandegrift/qbwiki/wiki/Home/
The conversion to LaTeX should make this bank more compatible with VLEs
Quizbank - Quizbank/Python/LaTex - Category:QB/LaTeXpdf - QB - edit news
Students with minimal Python skills can now write numerical questions

-
• This is a conceptual quiz that should not require a calculator. Even thought there are only 6 questions, we can use these six as templates for students to modify in the first week of Phy1050 because we will also introduce [[QB/d_zTemplateConceptual, which will introduce students to the script used to create and modify these Quizbank quizzes.

See special:permalink/1945717 for a wikitext version of this quiz.

### LaTexMarkup begin

%

%This code creates both the question and answer key using \newcommand\mytest
%%%    EDIT QUIZ INFO  HERE   %%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\quizname}{QB/d cp2.gaussC}

\newcommand{\quiztype}{conceptual}%[[Category:QB/conceptual]]
%%%%% PREAMBLE%%%%%%%%%%%%
\newif\ifkey %estabkishes Boolean ifkey to turn on and off endnotes

\documentclass[11pt]{exam}
\RequirePackage{amssymb, amsfonts, amsmath, latexsym, verbatim,
xspace, setspace,datetime}
\RequirePackage{tikz, pgflibraryplotmarks, hyperref}
\usepackage[left=.5in, right=.5in, bottom=.5in, top=.75in]{geometry}
\usepackage{endnotes, multicol,textgreek} %
\usepackage{graphicx} %
\singlespacing %OR \onehalfspacing OR \doublespacing
\parindent 0ex % Turns off paragraph indentation
% BEGIN DOCUMENT
\begin{document}
\title{d\_cp2.gaussC}
\author{The LaTex code that creates this quiz is released to the Public Domain\\
Attribution for each question is documented in the Appendix}
\maketitle
\begin{center}
\includegraphics[width=0.15\textwidth]{666px-Wikiversity-logo-en.png}
\\Latex markup at\\
\end{center}
\begin{frame}{}
\begin{multicols}{3}
\tableofcontents
\end{multicols}
\end{frame}
\pagebreak\section{Quiz}
\keytrue
\begin{questions}\keytrue

\question If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field $$(\varepsilon_0EA^*= \rho V^*)$$,  $$\vec E$$ was calculated inside the Gaussian surface\ifkey\endnote{Public Domain CC0 [[user:Guy vandegrift]] placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1945717}}}\fi
\begin{choices}
\choice True
\CorrectChoice False
\end{choices}

\question If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field $$(\varepsilon_0EA^*= \rho V^*)$$,  $$\vec E$$ was calculated outside the Gaussian surface\ifkey\endnote{Public Domain CC0 [[user:Guy vandegrift]] placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1945717}}}\fi
\begin{choices}
\choice True
\CorrectChoice False
\end{choices}

\question If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field $$(\varepsilon_0EA^*= \rho V^*)$$,  $$\vec E$$ was calculated on the Gaussian surface\ifkey\endnote{Public Domain CC0 [[user:Guy vandegrift]] placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1945717}}}\fi
\begin{choices}
\CorrectChoice True
\choice False
\end{choices}

\question If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field $$(\varepsilon_0EA^*= \rho V^*)$$,  $$\vec E$$ had\ifkey\endnote{Public Domain CC0 [[user:Guy vandegrift]] placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1945717}}}\fi
\begin{choices}
\choice constant direction and magnitude over the entire Gaussian surface
\CorrectChoice constant magnitude over a portion of the Gaussian surface
\choice constant direction over a portion of the Gaussian surface
\choice constant in direction over the entire Gaussian surface
\end{choices}

\question \includegraphics[width=0.19\textwidth]{GAUSS2.png}In this description of the flux element, $$d\vec S = \hat n dA_j$$ (j=1,2,3) where $$\hat n$$ is the outward unit normal, and a positive charge is assumed at point '''O''', inside the Gaussian surface shown.  The field lines exit at $$S_1$$ and $$S_3$$ but enter at $$S_2$$. In this figure, $$dA_1=dA_3$$\ifkey\endnote{Public Domain CC0 [[user:Guy vandegrift]] placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1945717}}}\fi
\begin{choices}
\choice True
\CorrectChoice False
\end{choices}

\question \includegraphics[width=0.19\textwidth]{GAUSS2.png}In this description of the flux element, $$d\vec S = \hat n dA_j$$ (j=1,2,3) where $$\hat n$$ is the outward unit normal, and a positive charge is assumed at point '''O''', inside the Gaussian surface shown.  The field lines exit at $$S_1$$ and $$S_3$$ but enter at $$S_2$$. In this figure, $$\vec E_1\cdot d\vec A_1=\vec E_3\cdot d\vec A_3$$ \ifkey\endnote{Public Domain CC0 [[user:Guy vandegrift]] placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1945717}}}\fi
\begin{choices}
\CorrectChoice True
\choice False
\end{choices}

\question \includegraphics[width=0.19\textwidth]{GAUSS2.png}In this description of the flux element, $$d\vec S = \hat n dA_j$$ (j=1,2,3) where $$\hat n$$ is the outward unit normal, and a positive charge is assumed at point '''O''', inside the Gaussian surface shown.  The field lines exit at $$S_1$$ and $$S_3$$ but enter at $$S_2$$. In this figure, $$\vec E_1\cdot d\vec A_1+\vec E_3\cdot d\vec A_3 =0$$\ifkey\endnote{Public Domain CC0 [[user:Guy vandegrift]] placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1945717}}}\fi
\begin{choices}
\choice True
\CorrectChoice False
\end{choices}

\question \includegraphics[width=0.19\textwidth]{GAUSS2.png}In this description of the flux element, $$d\vec S = \hat n dA_j$$ (j=1,2,3) where $$\hat n$$ is the outward unit normal, and a positive charge is assumed at point '''O''', inside the Gaussian surface shown.  The field lines exit at $$S_1$$ and $$S_3$$ but enter at $$S_2$$. In this figure, $$\vec E_1\cdot d\vec A_1+\vec E_2\cdot d\vec A_3 =0$$  \ifkey\endnote{Public Domain CC0 [[user:Guy vandegrift]] placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1945717}}}\fi
\begin{choices}
\CorrectChoice True
\choice False
\end{choices}

\end{questions}
\newpage
\end{document}