Jump to content

PlanetPhysics/Algebraic Topology

From Wikiversity

Algebraic topology

[edit | edit source]

Introduction

[edit | edit source]

Algebraic topology (AT) utilizes algebraic approaches to solve topological problems, such as the classification of surfaces, proving duality theorems for manifolds and approximation theorems for topological spaces. A central problem in algebraic topology is to find algebraic invariants of topological spaces, which is usually carried out by means of homotopy, homology and cohomology groups. There are close connections between algebraic topology, Algebraic Geometry (AG), non-commutative geometry and, of course, its most recent development-- non-Abelian Algebraic Topology (NAAT). On the other hand, there are also close ties between algebraic geometry and number theory.

Outline

[edit | edit source]
  1. Homotopy theory and fundamental groups #Topology and groupoids; van Kampen theorem
  2. Homology and cohomology theories
  3. Duality
  4. category theory applications in algebraic topology
  5. indexes of category, functors and natural transformations
  6. Grothendieck's Descent theory
  7. `Anabelian Geometry' #Categorical Galois theory
  8. higher dimensional algebra (HDA)
  9. Non-Abelian Quantum Algebraic Topology (NAQAT)
  10. Quantum Geometry
  11. Non-Abelian algebraic topology (NAAT)

Homotopy theory and fundamental groups

[edit | edit source]
  1. Homotopy
  2. Fundamental group of a space
  3. Fundamental theorems
  4. Van Kampen theorem #Whitehead groups, torsion and towers
  5. Postnikov towers

Topology and Groupoids

[edit | edit source]
  1. Topology definition, axioms and basic concepts #Fundamental groupoid
  2. topological groupoid #van Kampen theorem for groupoids
  3. Groupoid pushout theorem
  4. double groupoids and crossed modules
  5. new4

Homology theory

[edit | edit source]
  1. homology group #Homology sequence
  2. Homology complex
  3. new4

Cohomology theory

[edit | edit source]
  1. Cohomology group
  2. Cohomology sequence
  3. DeRham cohomology
  4. new4

Duality in algebraic topology and category theory

[edit | edit source]
  1. Tanaka-Krein duality
  2. Grothendieck duality
  3. categorical duality #tangled duality #DA5
  4. DA6
  5. DA7

Category theory applications

[edit | edit source]
  1. abelian categories
  2. Topological category #Fundamental groupoid functor
  3. Categorical Galois theory
  4. Non-Abelian algebraic topology
  5. Group category
  6. groupoid category # category
  7. topos and topoi axioms
  8. generalized toposes #Categorical logic and algebraic topology
  9. meta-theorems #Duality between spaces and algebras

Index of categories

[edit | edit source]

The following is a listing of categories relevant to algebraic topology:

  1. Algebraic categories
  2. Topological category
  3. Category of sets, Set
  4. Category of topological spaces
  5. category of Riemannian manifolds #Category of CW-complexes
  6. Category of Hausdorff spaces
  7. category of Borel spaces #Category of CR-complexes
  8. Category of graphs #Category of spin networks #Category of groups
  9. Galois category
  10. Category of fundamental groups
  11. Category of Polish groups
  12. Groupoid category
  13. category of groupoids (or groupoid category)
  14. category of Borel groupoids #Category of fundamental groupoids
  15. Category of functors (or functor category)
  16. Double groupoid category
  17. double category #category of Hilbert spaces #category of quantum automata #R-category #Category of algebroids #Category of double algebroids
  18. Category of dynamical systems

Index of functors

[edit | edit source]

The following is a contributed listing of functors:

  1. Covariant functors
  2. Contravariant functors
  3. adjoint functors
  4. preadditive functors
  5. Additive functor
  6. representable functors
  7. Fundamental groupoid functor
  8. Forgetful functors
  9. Grothendieck group functor
  10. Exact functor
  11. Multi-functor
  12. section functors
  13. NT2
  14. NT3

Index of natural transformations

[edit | edit source]

The following is a contributed listing of natural transformations:

  1. natural equivalence #Natural transformations in a 2-category #NT3
  2. NT1
  3. NT2
  4. NT3

Grothendieck proposals

[edit | edit source]
  1. Esquisse d'un Programme

\item Pursuing Stacks

  1. S2
  2. S3
  3. S4

Descent theory

[edit | edit source]
  1. D1
  2. D2
  3. D3
  4. D4

Higher dimensional algebra (HDA)

[edit | edit source]
  1. Categorical groups
  2. Double groupoids
  3. Double algebroids
  4. Bi-algebroids
  5. -algebroid
  6. -category
  7. -category
  8. super-category #weak n-categories #Bi-dimensional Geometry
  9. Noncommutative geometry
  10. Higher-Homotopy theories
  11. Higher-Homotopy Generalized van Kampen Theorem (HGvKT)
  12. H1
  13. H2
  14. H3
  15. H4

Axioms of cohomology theory

[edit | edit source]
  1. A1
  2. A2
  3. A3
  4. A4
  5. A5
  6. A6
  7. A7

Axioms of homology theory

[edit | edit source]
  1. A1
  1. A2
  2. A3
  3. A4
  4. A5
  5. A6

Non-Abelian Algebraic Topology (NAAT)

[edit | edit source]
  1. An overview of Nonabelian Algebraic Topology
  2. non-Abelian categories
  3. non-commutative groupoids (including non-Abelian groups)
  4. Generalized van Kampen theorems
  5. Noncommutative Geometry (NCG)
  6. Non-commutative `spaces' of functions #Non-Abelian Algebraic Topology textbook

References for NAAT

[edit | edit source]
  1. [1] M. Alp and C. D. Wensley, XMod, Crossed modules and Cat1--groups: a GAP4 package,(2004) (http://www.maths.bangor.ac.uk/chda/)
  1. [2] R. Brown, Elements of Modern Topology, McGraw Hill, Maidenhead, 1968. second edition as Topology: a geometric account of general topology, homotopy types, and the fundamental groupoid, Ellis Horwood, Chichester (1988) 460 pp.
  1. [3] R. Brown, `Higher dimensional group theory'
  1. [4] R. Brown.`crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local--to--global problems', Proceedings of the fields Institute Workshop on Categorical Structures for Descent and Galois Theory, Hopf Algebras and Semiabelian Categories, September 23--28, 2002, Contemp. Math. (2004). (to appear), UWB Math Preprint

02.26.pdf (30 pp.)

  1. [5] R. Brown and P. J. Higgins, On the connection between the second relative homotopy groups of some related spaces, Proc.London Math. Soc., (3) 36 (1978) 193--212.
  1. [6] R. Brown and R. Sivera, `Nonabelian algebraic topology', (in preparation) Part I is downloadable from

(http://www.bangor.ac.uk/~mas010/nonab-a-t.html)

  1. [7] R. Brown and C. B. Spencer, Double groupoids and crossed modules, Cahiers Top. G'/eom.Diff., 17 (1976) 343--362.
  1. [8] R. Brown and C. D.Wensley, `computation and homotopical applications of induced crossed modules', J. Symbolic Computation, 35 (2003) 59--72.
  1. [9] The GAP Group, 2004, GAP --Groups, algorithms, and programming, version 4.4 , Technical report, (http://www.gap-system.org)
  1. [10] A. Grothendieck, `Pursuing stacks', 600p, 1983, distributed from Bangor. Now being edited by G. Maltsiniotis for the SMF.
  1. [11] P. J. Higgins, 1971, Categories and Groupoids,

Van Nostrand, New York. Reprint Series, Theory and Appl. Categories (to appear).

  1. [12] V. Sharko, 1993, Functions on manifolds: algebraic and topological aspects, number 131 in Translations of Mathematical Monographs, American Mathematical Society.
  1. new1
  1. new2
  2. new3
  3. new4
  1. new1
  2. new2
  3. new3
  4. new4

References

[edit | edit source]

Bibliography on Category theory, AT and QAT

Textbooks and Expositions:

[edit | edit source]
  1. A Textbook1
  2. A Textbook2
  3. A Textbook3
  4. A Textbook4
  5. A Textbook5
  6. A Textbook6
  7. A Textbook7
  8. A Textbook8
  9. A Textbook9
  10. A Textbook10
  11. A Textbook11
  12. A Textbook12
  13. A Textbook13
  14. new1
  15. new2
  16. new3
  17. new4

Algebraic Topology and Groupoids

[edit | edit source]
  1. Ronald Brown: Topology and Groupoids, BookSurge LLC (2006).
  2. Ronald Brown R, P.J. Higgins, and R. Sivera.: "Non-Abelian algebraic topology" .

http://www. bangor.ac.uk/mas010/nonab-a-t.html; http://www.bangor.ac.uk/mas010/nonab-t/partI010604.pdf , Springer: in press (2010).

  1. R. Brown and J.-L. Loday: Homotopical excision, and Hurewicz theorems, for n-cubes of spaces, Proc. London Math. Soc., 54:(3), 176--192, (1987).
  2. R. Brown and J.-L. Loday: Van Kampen Theorems for diagrams of spaces, Topology, 26: 311-337 (1987).
  3. R. Brown and G. H. Mosa: Double algebroids and crossed modules of algebroids, University of Wales-Bangor, Maths Preprint, 1986.
  4. R. Brown and C.B. Spencer: Double groupoids and crossed modules, Cahiers Top. G\'eom. Diff. 17 (1976), 343--362.
  5. Madalina (Ruxi) Buneci.: groupoid representations., Ed. Mirton: Timisoara (2003).
  6. Allain Connes: noncommutative geometry, Academic Press 1994.

Non--Abelian Algebraic Topology and Higher Dimensional Algebra

[edit | edit source]
  1. Ronald Brown: non--Abelian algebraic topology, vols. I and II. 2010. (in press: Springer): Nonabelian Algebraic Topology:filtered spaces, crossed complexes, cubical higher homotopy groupoids
  1. Higher Dimensional Algebra: An Introduction
  1. Higher Dimensional Algebra and Algebraic Topology., 282 pages, Feb. 10, 2010