PlanetPhysics/Trivial Groupoid

From Wikiversity
Jump to navigation Jump to search

"At the opposite extreme to varieties determined by their finite members are those which have only one finite member, the trivial groupoid."[1]

Category

[edit | edit source]

"Categorically any setoid is a trivial groupoid, ie a category where every morphism is an isomorphism."[2]

See also

[edit | edit source]

References

[edit | edit source]
  1. Sherman K Stein (April 1963). "Finite models of identities". Proceedings of the American Mathematical Society 14 (02): 216-22. http://www.ams.org/proc/1963-014-02/S0002-9939-1963-0144995-X/S0002-9939-1963-0144995-X.pdf. Retrieved 2015-06-29. 
  2. T Altenkirch (July 1999). Extensional equality in intensional type theory, In: Logic in Computer Science. 14th. IEEE. pp. 412-20. doi:10.1109/LICS.1999.782636. ISBN 0-7695-0158-3. http://www.cs.nott.ac.uk/~txa/publ/lics99.pdf. Retrieved 2015-06-29. 
[edit | edit source]