Physics equations/22-Magnetism/Q:AmpereLaw
Appearance
Equations for this quiz Solutions(pdf)
- The accuracy of these quiz answers have not been verified.
Study: http://en.wikiversity.org/wiki/Physics_equations/Sheet/All_chapters
c22Magnetism_ampereLaw_v1
[edit | edit source]
copies
|
---|
===2=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 8.2A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 9.6m.} +a) 6.03E+01 m -b) 6.61E+01 m -c) 7.25E+01 m -d) 7.95E+01 m -e) 8.72E+01 m ===3=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 7.9A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 4.2m.} -a) 1.83E+01 m -b) 2.00E+01 m -c) 2.19E+01 m -d) 2.41E+01 m +e) 2.64E+01 m ===4=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 6.9A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 9.9m.} +a) 6.22E+01 m -b) 6.82E+01 m -c) 7.48E+01 m -d) 8.20E+01 m -e) 8.99E+01 m ===5=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 7.3A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 8.3m.} -a) 4.76E+01 m +b) 5.22E+01 m -c) 5.72E+01 m -d) 6.27E+01 m -e) 6.87E+01 m ===6=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 9.6A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 9.8m.} -a) 4.26E+01 m -b) 4.67E+01 m -c) 5.12E+01 m -d) 5.62E+01 m +e) 6.16E+01 m ===7=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 7.2A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 8.2m.} -a) 4.70E+01 m +b) 5.15E+01 m -c) 5.65E+01 m -d) 6.19E+01 m -e) 6.79E+01 m ===8=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 8.6A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 8.8m.} -a) 3.83E+01 m -b) 4.19E+01 m -c) 4.60E+01 m -d) 5.04E+01 m +e) 5.53E+01 m ===9=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 7.4A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 6.3m.} -a) 2.74E+01 m -b) 3.00E+01 m -c) 3.29E+01 m -d) 3.61E+01 m +e) 3.96E+01 m ===10=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 6.9A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 9.8m.} +a) 6.16E+01 m -b) 6.75E+01 m -c) 7.40E+01 m -d) 8.12E+01 m -e) 8.90E+01 m ===11=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 9.8A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 4.6m.} +a) 2.89E+01 m -b) 3.17E+01 m -c) 3.47E+01 m -d) 3.81E+01 m -e) 4.18E+01 m ===12=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 5.8A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 4.4m.} -a) 2.30E+01 m -b) 2.52E+01 m +c) 2.76E+01 m -d) 3.03E+01 m -e) 3.32E+01 m ===13=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 4.8A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 7.7m.} +a) 4.84E+01 m -b) 5.30E+01 m -c) 5.82E+01 m -d) 6.38E+01 m -e) 6.99E+01 m ===14=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 4.7A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 6.5m.} -a) 3.10E+01 m -b) 3.40E+01 m -c) 3.72E+01 m +d) 4.08E+01 m -e) 4.48E+01 m ===15=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 5A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 5.4m.} -a) 3.09E+01 m +b) 3.39E+01 m -c) 3.72E+01 m -d) 4.08E+01 m -e) 4.47E+01 m ===16=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 6.8A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 7.9m.} +a) 4.96E+01 m -b) 5.44E+01 m -c) 5.97E+01 m -d) 6.54E+01 m -e) 7.17E+01 m ===17=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 4.9A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 4.2m.} -a) 2.00E+01 m -b) 2.19E+01 m -c) 2.41E+01 m +d) 2.64E+01 m -e) 2.89E+01 m ===18=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 6.9A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 4.4m.} -a) 2.10E+01 m -b) 2.30E+01 m -c) 2.52E+01 m +d) 2.76E+01 m -e) 3.03E+01 m ===19=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 5.8A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 6.1m.} +a) 3.83E+01 m -b) 4.20E+01 m -c) 4.61E+01 m -d) 5.05E+01 m -e) 5.54E+01 m ===20=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 6.7A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 4.1m.} +a) 2.58E+01 m -b) 2.82E+01 m -c) 3.10E+01 m -d) 3.40E+01 m -e) 3.72E+01 m ===21=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 4.8A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 6.2m.} -a) 2.70E+01 m -b) 2.96E+01 m -c) 3.24E+01 m -d) 3.55E+01 m +e) 3.90E+01 m ===22=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 5.7A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 9.2m.} -a) 4.38E+01 m -b) 4.81E+01 m -c) 5.27E+01 m +d) 5.78E+01 m -e) 6.34E+01 m ===23=== {<!--c22Magnetism_ampereLaw_1-->Amphere's law for [[w:magnetostatics|magnetostatic]] currents is that <math>\oint\vec H\cdot\vec{d\ell}=\int\vec J\cdot \vec {dA}</math> equals the current enclosed by the closed loop, and <math>B=\mu_0H</math> is the magnetic field. A current of 6.5A flows upward along the z axis. Noting that for this geometry, <math>\oint \vec B \cdot\vec{d\ell} = B\oint d\ell</math>, calculate the line integral <math>\oint d\ell</math> for a circle of radius 6.8m.} +a) 4.27E+01 m -b) 4.68E+01 m -c) 5.14E+01 m -d) 5.63E+01 m -e) 6.18E+01 m |
c22Magnetism_ampereLaw_v1
[edit | edit source]
copies
|
---|
===2=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 9.6m from a wire carrying a current of 8.2A?} -a) 1.24E-01 A/m +b) 1.36E-01 A/m -c) 1.49E-01 A/m -d) 1.63E-01 A/m -e) 1.79E-01 A/m ===3=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 4.2m from a wire carrying a current of 7.9A?} -a) 2.73E-01 A/m +b) 2.99E-01 A/m -c) 3.28E-01 A/m -d) 3.60E-01 A/m -e) 3.95E-01 A/m ===4=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 9.9m from a wire carrying a current of 6.9A?} +a) 1.11E-01 A/m -b) 1.22E-01 A/m -c) 1.33E-01 A/m -d) 1.46E-01 A/m -e) 1.60E-01 A/m ===5=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 8.3m from a wire carrying a current of 7.3A?} +a) 1.40E-01 A/m -b) 1.53E-01 A/m -c) 1.68E-01 A/m -d) 1.85E-01 A/m -e) 2.02E-01 A/m ===6=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 9.8m from a wire carrying a current of 9.6A?} -a) 1.30E-01 A/m -b) 1.42E-01 A/m +c) 1.56E-01 A/m -d) 1.71E-01 A/m -e) 1.87E-01 A/m ===7=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 8.2m from a wire carrying a current of 7.2A?} -a) 9.67E-02 A/m -b) 1.06E-01 A/m -c) 1.16E-01 A/m -d) 1.27E-01 A/m +e) 1.40E-01 A/m ===8=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 8.8m from a wire carrying a current of 8.6A?} +a) 1.56E-01 A/m -b) 1.71E-01 A/m -c) 1.87E-01 A/m -d) 2.05E-01 A/m -e) 2.25E-01 A/m ===9=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 6.3m from a wire carrying a current of 7.4A?} +a) 1.87E-01 A/m -b) 2.05E-01 A/m -c) 2.25E-01 A/m -d) 2.46E-01 A/m -e) 2.70E-01 A/m ===10=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 9.8m from a wire carrying a current of 6.9A?} -a) 1.02E-01 A/m +b) 1.12E-01 A/m -c) 1.23E-01 A/m -d) 1.35E-01 A/m -e) 1.48E-01 A/m ===11=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 4.6m from a wire carrying a current of 9.8A?} -a) 2.57E-01 A/m -b) 2.82E-01 A/m -c) 3.09E-01 A/m +d) 3.39E-01 A/m -e) 3.72E-01 A/m ===12=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 4.4m from a wire carrying a current of 5.8A?} -a) 1.91E-01 A/m +b) 2.10E-01 A/m -c) 2.30E-01 A/m -d) 2.52E-01 A/m -e) 2.77E-01 A/m ===13=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 7.7m from a wire carrying a current of 4.8A?} +a) 9.92E-02 A/m -b) 1.09E-01 A/m -c) 1.19E-01 A/m -d) 1.31E-01 A/m -e) 1.43E-01 A/m ===14=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 6.5m from a wire carrying a current of 4.7A?} -a) 7.96E-02 A/m -b) 8.73E-02 A/m -c) 9.57E-02 A/m -d) 1.05E-01 A/m +e) 1.15E-01 A/m ===15=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 5.4m from a wire carrying a current of 5A?} -a) 1.34E-01 A/m +b) 1.47E-01 A/m -c) 1.62E-01 A/m -d) 1.77E-01 A/m -e) 1.94E-01 A/m ===16=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 7.9m from a wire carrying a current of 6.8A?} -a) 1.14E-01 A/m -b) 1.25E-01 A/m +c) 1.37E-01 A/m -d) 1.50E-01 A/m -e) 1.65E-01 A/m ===17=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 4.2m from a wire carrying a current of 4.9A?} -a) 1.28E-01 A/m -b) 1.41E-01 A/m -c) 1.54E-01 A/m -d) 1.69E-01 A/m +e) 1.86E-01 A/m ===18=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 4.4m from a wire carrying a current of 6.9A?} -a) 2.28E-01 A/m +b) 2.50E-01 A/m -c) 2.74E-01 A/m -d) 3.00E-01 A/m -e) 3.29E-01 A/m ===19=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 6.1m from a wire carrying a current of 5.8A?} -a) 1.38E-01 A/m +b) 1.51E-01 A/m -c) 1.66E-01 A/m -d) 1.82E-01 A/m -e) 1.99E-01 A/m ===20=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 4.1m from a wire carrying a current of 6.7A?} +a) 2.60E-01 A/m -b) 2.85E-01 A/m -c) 3.13E-01 A/m -d) 3.43E-01 A/m -e) 3.76E-01 A/m ===21=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 6.2m from a wire carrying a current of 4.8A?} -a) 9.35E-02 A/m -b) 1.02E-01 A/m -c) 1.12E-01 A/m +d) 1.23E-01 A/m -e) 1.35E-01 A/m ===22=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 9.2m from a wire carrying a current of 5.7A?} -a) 7.48E-02 A/m -b) 8.20E-02 A/m -c) 8.99E-02 A/m +d) 9.86E-02 A/m -e) 1.08E-01 A/m ===23=== {<!--c22Magnetism_ampereLaw_2-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H</math> at a distance of 6.8m from a wire carrying a current of 6.5A?} -a) 1.39E-01 A/m +b) 1.52E-01 A/m -c) 1.67E-01 A/m -d) 1.83E-01 A/m -e) 2.01E-01 A/m |
c22Magnetism_ampereLaw_v1
[edit | edit source]
copies
|
---|
===2=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (8.6443,4.1757) if a current of 8.2A flows through a wire that runs along the z axis?} -a) 8.47E-02 A/m -b) 9.29E-02 A/m -c) 1.02E-01 A/m -d) 1.12E-01 A/m +e) 1.22E-01 A/m ===3=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (2.0898,3.6432) if a current of 7.9A flows through a wire that runs along the z axis?} -a) 1.36E-01 A/m +b) 1.49E-01 A/m -c) 1.63E-01 A/m -d) 1.79E-01 A/m -e) 1.96E-01 A/m ===4=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (6.1539,7.7549) if a current of 6.9A flows through a wire that runs along the z axis?} -a) 5.23E-02 A/m -b) 5.74E-02 A/m -c) 6.29E-02 A/m +d) 6.90E-02 A/m -e) 7.56E-02 A/m ===5=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (7.9293,2.4528) if a current of 7.3A flows through a wire that runs along the z axis?} -a) 1.11E-01 A/m -b) 1.22E-01 A/m +c) 1.34E-01 A/m -d) 1.47E-01 A/m -e) 1.61E-01 A/m ===6=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (8.0883,5.5335) if a current of 9.6A flows through a wire that runs along the z axis?} -a) 8.90E-02 A/m -b) 9.76E-02 A/m -c) 1.07E-01 A/m -d) 1.17E-01 A/m +e) 1.29E-01 A/m ===7=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (7.8338,2.4233) if a current of 7.2A flows through a wire that runs along the z axis?} -a) 1.01E-01 A/m -b) 1.11E-01 A/m -c) 1.22E-01 A/m +d) 1.34E-01 A/m -e) 1.46E-01 A/m ===8=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (8.407,2.6006) if a current of 8.6A flows through a wire that runs along the z axis?} -a) 1.13E-01 A/m -b) 1.24E-01 A/m -c) 1.36E-01 A/m +d) 1.49E-01 A/m -e) 1.63E-01 A/m ===9=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (5.6728,2.7403) if a current of 7.4A flows through a wire that runs along the z axis?} -a) 1.28E-01 A/m -b) 1.40E-01 A/m -c) 1.54E-01 A/m +d) 1.68E-01 A/m -e) 1.85E-01 A/m ===10=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (9.3623,2.8961) if a current of 6.9A flows through a wire that runs along the z axis?} -a) 8.90E-02 A/m -b) 9.76E-02 A/m +c) 1.07E-01 A/m -d) 1.17E-01 A/m -e) 1.29E-01 A/m ===11=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (2.8594,3.6033) if a current of 9.8A flows through a wire that runs along the z axis?} -a) 1.75E-01 A/m -b) 1.92E-01 A/m +c) 2.11E-01 A/m -d) 2.31E-01 A/m -e) 2.53E-01 A/m ===12=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (3.2194,2.9992) if a current of 5.8A flows through a wire that runs along the z axis?} -a) 1.06E-01 A/m -b) 1.16E-01 A/m -c) 1.28E-01 A/m -d) 1.40E-01 A/m +e) 1.54E-01 A/m ===13=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (6.3551,4.3477) if a current of 4.8A flows through a wire that runs along the z axis?} +a) 8.19E-02 A/m -b) 8.98E-02 A/m -c) 9.84E-02 A/m -d) 1.08E-01 A/m -e) 1.18E-01 A/m ===14=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (6.2097,1.9209) if a current of 4.7A flows through a wire that runs along the z axis?} -a) 8.34E-02 A/m -b) 9.14E-02 A/m -c) 1.00E-01 A/m +d) 1.10E-01 A/m -e) 1.21E-01 A/m ===15=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (5.1588,1.5958) if a current of 5A flows through a wire that runs along the z axis?} +a) 1.41E-01 A/m -b) 1.54E-01 A/m -c) 1.69E-01 A/m -d) 1.86E-01 A/m -e) 2.03E-01 A/m ===16=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (5.7803,5.3849) if a current of 6.8A flows through a wire that runs along the z axis?} -a) 6.93E-02 A/m -b) 7.60E-02 A/m -c) 8.34E-02 A/m -d) 9.14E-02 A/m +e) 1.00E-01 A/m ===17=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (2.0898,3.6432) if a current of 4.9A flows through a wire that runs along the z axis?} -a) 6.39E-02 A/m -b) 7.01E-02 A/m -c) 7.68E-02 A/m -d) 8.43E-02 A/m +e) 9.24E-02 A/m ===18=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (1.5944,4.101) if a current of 6.9A flows through a wire that runs along the z axis?} -a) 6.86E-02 A/m -b) 7.52E-02 A/m -c) 8.25E-02 A/m +d) 9.04E-02 A/m -e) 9.92E-02 A/m ===19=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (2.2104,5.6854) if a current of 5.8A flows through a wire that runs along the z axis?} -a) 4.16E-02 A/m -b) 4.56E-02 A/m -c) 5.00E-02 A/m +d) 5.48E-02 A/m -e) 6.01E-02 A/m ===20=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (2.5486,3.2116) if a current of 6.7A flows through a wire that runs along the z axis?} -a) 1.23E-01 A/m -b) 1.34E-01 A/m -c) 1.47E-01 A/m +d) 1.62E-01 A/m -e) 1.77E-01 A/m ===21=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (3.854,4.8566) if a current of 4.8A flows through a wire that runs along the z axis?} -a) 6.37E-02 A/m -b) 6.99E-02 A/m +c) 7.66E-02 A/m -d) 8.40E-02 A/m -e) 9.21E-02 A/m ===22=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (5.7188,7.2066) if a current of 5.7A flows through a wire that runs along the z axis?} +a) 6.13E-02 A/m -b) 6.72E-02 A/m -c) 7.37E-02 A/m -d) 8.08E-02 A/m -e) 8.86E-02 A/m ===23=== {<!--c22Magnetism_ampereLaw_3-->If <math>H=B/\mu_0</math>, where <math>B</math> is magnetic field, what is <math>H_y</math> at the point (6.4963,2.0095) if a current of 6.5A flows through a wire that runs along the z axis?} -a) 1.33E-01 A/m +b) 1.45E-01 A/m -c) 1.59E-01 A/m -d) 1.75E-01 A/m -e) 1.92E-01 A/m |
c22Magnetism_ampereLaw_v1
[edit | edit source]
copies
|
---|
===2=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 2705 turns and is 134 meters long. The wire carrys a current of 8.2A. What is the magnetic field in the center?} -a) 1.90E-04 Tesla +b) 2.08E-04 Tesla -c) 2.28E-04 Tesla -d) 2.50E-04 Tesla -e) 2.74E-04 Tesla ===3=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1254 turns and is 164 meters long. The wire carrys a current of 9.3A. What is the magnetic field in the center?} -a) 7.43E-05 Tesla -b) 8.15E-05 Tesla +c) 8.94E-05 Tesla -d) 9.80E-05 Tesla -e) 1.07E-04 Tesla ===4=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 2543 turns and is 166 meters long. The wire carrys a current of 9.2A. What is the magnetic field in the center?} -a) 1.34E-04 Tesla -b) 1.47E-04 Tesla -c) 1.62E-04 Tesla +d) 1.77E-04 Tesla -e) 1.94E-04 Tesla ===5=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 2762 turns and is 142 meters long. The wire carrys a current of 9.7A. What is the magnetic field in the center?} +a) 2.37E-04 Tesla -b) 2.60E-04 Tesla -c) 2.85E-04 Tesla -d) 3.13E-04 Tesla -e) 3.43E-04 Tesla ===6=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1070 turns and is 122 meters long. The wire carrys a current of 8.4A. What is the magnetic field in the center?} -a) 7.02E-05 Tesla -b) 7.70E-05 Tesla -c) 8.44E-05 Tesla +d) 9.26E-05 Tesla -e) 1.02E-04 Tesla ===7=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 2647 turns and is 180 meters long. The wire carrys a current of 9.3A. What is the magnetic field in the center?} +a) 1.72E-04 Tesla -b) 1.88E-04 Tesla -c) 2.07E-04 Tesla -d) 2.27E-04 Tesla -e) 2.48E-04 Tesla ===8=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1634 turns and is 122 meters long. The wire carrys a current of 9.5A. What is the magnetic field in the center?} +a) 1.60E-04 Tesla -b) 1.75E-04 Tesla -c) 1.92E-04 Tesla -d) 2.11E-04 Tesla -e) 2.31E-04 Tesla ===9=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1016 turns and is 136 meters long. The wire carrys a current of 7.6A. What is the magnetic field in the center?} -a) 5.41E-05 Tesla -b) 5.93E-05 Tesla -c) 6.51E-05 Tesla +d) 7.13E-05 Tesla -e) 7.82E-05 Tesla ===10=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1992 turns and is 162 meters long. The wire carrys a current of 8.7A. What is the magnetic field in the center?} -a) 1.02E-04 Tesla -b) 1.12E-04 Tesla -c) 1.23E-04 Tesla +d) 1.34E-04 Tesla -e) 1.47E-04 Tesla ===11=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1946 turns and is 144 meters long. The wire carrys a current of 9A. What is the magnetic field in the center?} -a) 1.06E-04 Tesla -b) 1.16E-04 Tesla -c) 1.27E-04 Tesla -d) 1.39E-04 Tesla +e) 1.53E-04 Tesla ===12=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1656 turns and is 144 meters long. The wire carrys a current of 8.4A. What is the magnetic field in the center?} -a) 8.40E-05 Tesla -b) 9.21E-05 Tesla -c) 1.01E-04 Tesla -d) 1.11E-04 Tesla +e) 1.21E-04 Tesla ===13=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 2066 turns and is 156 meters long. The wire carrys a current of 7.6A. What is the magnetic field in the center?} -a) 8.75E-05 Tesla -b) 9.59E-05 Tesla -c) 1.05E-04 Tesla -d) 1.15E-04 Tesla +e) 1.26E-04 Tesla ===14=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 2979 turns and is 170 meters long. The wire carrys a current of 8.1A. What is the magnetic field in the center?} +a) 1.78E-04 Tesla -b) 1.96E-04 Tesla -c) 2.14E-04 Tesla -d) 2.35E-04 Tesla -e) 2.58E-04 Tesla ===15=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 2662 turns and is 182 meters long. The wire carrys a current of 9.2A. What is the magnetic field in the center?} -a) 1.54E-04 Tesla +b) 1.69E-04 Tesla -c) 1.85E-04 Tesla -d) 2.03E-04 Tesla -e) 2.23E-04 Tesla ===16=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 2175 turns and is 134 meters long. The wire carrys a current of 7.6A. What is the magnetic field in the center?} -a) 1.29E-04 Tesla -b) 1.41E-04 Tesla +c) 1.55E-04 Tesla -d) 1.70E-04 Tesla -e) 1.86E-04 Tesla ===17=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1744 turns and is 146 meters long. The wire carrys a current of 9.5A. What is the magnetic field in the center?} +a) 1.43E-04 Tesla -b) 1.56E-04 Tesla -c) 1.71E-04 Tesla -d) 1.88E-04 Tesla -e) 2.06E-04 Tesla ===18=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1518 turns and is 156 meters long. The wire carrys a current of 8.9A. What is the magnetic field in the center?} -a) 8.26E-05 Tesla -b) 9.05E-05 Tesla -c) 9.93E-05 Tesla +d) 1.09E-04 Tesla -e) 1.19E-04 Tesla ===19=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 2890 turns and is 134 meters long. The wire carrys a current of 7.7A. What is the magnetic field in the center?} -a) 1.90E-04 Tesla +b) 2.09E-04 Tesla -c) 2.29E-04 Tesla -d) 2.51E-04 Tesla -e) 2.75E-04 Tesla ===20=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1982 turns and is 154 meters long. The wire carrys a current of 9.1A. What is the magnetic field in the center?} -a) 1.12E-04 Tesla -b) 1.22E-04 Tesla -c) 1.34E-04 Tesla +d) 1.47E-04 Tesla -e) 1.61E-04 Tesla ===21=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1259 turns and is 154 meters long. The wire carrys a current of 9A. What is the magnetic field in the center?} +a) 9.25E-05 Tesla -b) 1.01E-04 Tesla -c) 1.11E-04 Tesla -d) 1.22E-04 Tesla -e) 1.34E-04 Tesla ===22=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 2806 turns and is 118 meters long. The wire carrys a current of 9.7A. What is the magnetic field in the center?} -a) 2.41E-04 Tesla -b) 2.64E-04 Tesla +c) 2.90E-04 Tesla -d) 3.18E-04 Tesla -e) 3.48E-04 Tesla ===23=== {<!--c22Magnetism_ampereLaw_4-->A very long and thin solenoid has 1727 turns and is 138 meters long. The wire carrys a current of 8.1A. What is the magnetic field in the center?} -a) 9.66E-05 Tesla -b) 1.06E-04 Tesla -c) 1.16E-04 Tesla +d) 1.27E-04 Tesla -e) 1.40E-04 Tesla |
c22Magnetism_ampereLaw_v1
[edit | edit source]
copies
|
---|
===2=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 1223 turns and is 134 meters long. The wire carrys a current of 8.2A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 28 meters from the center and stops 93 meters from the center?} -a) 2.21E+03 A -b) 2.43E+03 A -c) 2.66E+03 A +d) 2.92E+03 A -e) 3.20E+03 A ===3=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 2850 turns and is 164 meters long. The wire carrys a current of 9.3A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 47 meters from the center and stops 108 meters from the center?} -a) 5.16E+03 A +b) 5.66E+03 A -c) 6.20E+03 A -d) 6.80E+03 A -e) 7.46E+03 A ===4=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 1880 turns and is 166 meters long. The wire carrys a current of 9.2A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 48 meters from the center and stops 102 meters from the center?} +a) 3.65E+03 A -b) 4.00E+03 A -c) 4.38E+03 A -d) 4.81E+03 A -e) 5.27E+03 A ===5=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 1016 turns and is 142 meters long. The wire carrys a current of 9.7A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 27 meters from the center and stops 84 meters from the center?} +a) 3.05E+03 A -b) 3.35E+03 A -c) 3.67E+03 A -d) 4.03E+03 A -e) 4.41E+03 A ===6=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 1292 turns and is 122 meters long. The wire carrys a current of 8.4A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 39 meters from the center and stops 75 meters from the center?} -a) 1.63E+03 A -b) 1.78E+03 A +c) 1.96E+03 A -d) 2.15E+03 A -e) 2.35E+03 A ===7=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 2994 turns and is 180 meters long. The wire carrys a current of 9.3A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 43 meters from the center and stops 101 meters from the center?} -a) 6.63E+03 A +b) 7.27E+03 A -c) 7.97E+03 A -d) 8.74E+03 A -e) 9.58E+03 A ===8=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 1513 turns and is 122 meters long. The wire carrys a current of 9.5A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 34 meters from the center and stops 89 meters from the center?} -a) 2.41E+03 A -b) 2.65E+03 A -c) 2.90E+03 A +d) 3.18E+03 A -e) 3.49E+03 A ===9=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 1965 turns and is 136 meters long. The wire carrys a current of 7.6A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 43 meters from the center and stops 88 meters from the center?} +a) 2.75E+03 A -b) 3.01E+03 A -c) 3.30E+03 A -d) 3.62E+03 A -e) 3.97E+03 A ===10=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 1847 turns and is 162 meters long. The wire carrys a current of 8.7A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 42 meters from the center and stops 103 meters from the center?} -a) 2.68E+03 A -b) 2.93E+03 A -c) 3.22E+03 A -d) 3.53E+03 A +e) 3.87E+03 A ===11=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 2918 turns and is 144 meters long. The wire carrys a current of 9A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 38 meters from the center and stops 89 meters from the center?} +a) 6.20E+03 A -b) 6.80E+03 A -c) 7.45E+03 A -d) 8.17E+03 A -e) 8.96E+03 A ===12=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 2472 turns and is 144 meters long. The wire carrys a current of 8.4A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 43 meters from the center and stops 87 meters from the center?} -a) 3.17E+03 A -b) 3.48E+03 A -c) 3.81E+03 A +d) 4.18E+03 A -e) 4.59E+03 A ===13=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 2376 turns and is 156 meters long. The wire carrys a current of 7.6A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 49 meters from the center and stops 102 meters from the center?} -a) 2.32E+03 A -b) 2.55E+03 A -c) 2.79E+03 A -d) 3.06E+03 A +e) 3.36E+03 A ===14=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 1409 turns and is 170 meters long. The wire carrys a current of 8.1A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 37 meters from the center and stops 100 meters from the center?} -a) 2.94E+03 A +b) 3.22E+03 A -c) 3.53E+03 A -d) 3.87E+03 A -e) 4.25E+03 A ===15=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 2240 turns and is 182 meters long. The wire carrys a current of 9.2A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 47 meters from the center and stops 109 meters from the center?} -a) 4.14E+03 A -b) 4.54E+03 A +c) 4.98E+03 A -d) 5.46E+03 A -e) 5.99E+03 A ===16=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 2219 turns and is 134 meters long. The wire carrys a current of 7.6A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 44 meters from the center and stops 86 meters from the center?} -a) 2.41E+03 A -b) 2.64E+03 A +c) 2.89E+03 A -d) 3.17E+03 A -e) 3.48E+03 A ===17=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 2682 turns and is 146 meters long. The wire carrys a current of 9.5A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 44 meters from the center and stops 86 meters from the center?} -a) 3.84E+03 A -b) 4.21E+03 A -c) 4.62E+03 A +d) 5.06E+03 A -e) 5.55E+03 A ===18=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 1259 turns and is 156 meters long. The wire carrys a current of 8.9A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 35 meters from the center and stops 90 meters from the center?} -a) 2.82E+03 A +b) 3.09E+03 A -c) 3.39E+03 A -d) 3.71E+03 A -e) 4.07E+03 A ===19=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 2763 turns and is 134 meters long. The wire carrys a current of 7.7A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 34 meters from the center and stops 86 meters from the center?} -a) 3.97E+03 A -b) 4.36E+03 A -c) 4.78E+03 A +d) 5.24E+03 A -e) 5.74E+03 A ===20=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 2774 turns and is 154 meters long. The wire carrys a current of 9.1A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 38 meters from the center and stops 94 meters from the center?} -a) 4.42E+03 A -b) 4.85E+03 A -c) 5.32E+03 A -d) 5.83E+03 A +e) 6.39E+03 A ===21=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 1397 turns and is 154 meters long. The wire carrys a current of 9A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 31 meters from the center and stops 93 meters from the center?} +a) 3.76E+03 A -b) 4.12E+03 A -c) 4.52E+03 A -d) 4.95E+03 A -e) 5.43E+03 A ===22=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 2006 turns and is 118 meters long. The wire carrys a current of 9.7A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 30 meters from the center and stops 78 meters from the center?} +a) 4.78E+03 A -b) 5.24E+03 A -c) 5.75E+03 A -d) 6.30E+03 A -e) 6.91E+03 A ===23=== {<!--c22Magnetism_ampereLaw_5-->A very long and thin solenoid has 1295 turns and is 138 meters long. The wire carrys a current of 8.1A. If this solenoid is sufficiently thin, what is the line integral of<math>\int \vec H\cdot\vec{d\ell}</math> along an on-axis path that starts 22 meters from the center and stops 90 meters from the center?} -a) 2.97E+03 A -b) 3.26E+03 A +c) 3.57E+03 A -d) 3.92E+03 A -e) 4.30E+03 A |