Survey research and design in psychology/Assessment/Exams/Final/Practice
This page addresses mistakes and questions raised by students about the 2009 practice final exam.
Explanations for practice exam questions
MLR
[edit | edit source]19
[edit | edit source]
|
20
[edit | edit source]
|
30
[edit | edit source]
|
How can you tell from this table?
This question could be answered by the process of elimination: b, c, d and true statements because:
- b: There is a notable drop between the zero-order and partial correlations for attentiveness and sociability (but not so much for Sex of student). Therefore these predictors must be correlated with one another.
- c: The Beta for for Sociability is about twice as large as for Settledness.
- d: Sex of student is not significant and has a fairly small Beta, so its not adding much in the way of predicting variance in the DV.
- -- Jtneill - Talk 06:42, 13 June 2008 (UTC)
ANOVA
[edit | edit source]35
[edit | edit source]
|
45
[edit | edit source]
In MLR, if the N was halved (from 200 to 100), Adjusted R2 will: __________.
|
How do you work this out? I suggest you read about Adjusted R2. Basically, this reduces R2 (for a sample) in order to estimate variance explained in a population. The larger the sample size, the smaller the reduction for adjusted R2. -- Jtneill - Talk 06:46, 13 June 2008 (UTC)
80-83
[edit | edit source]
For a 2 (A-B) x 2 (-/Y) factorial ANOVA, the following cell means indicate what kind of effects?
|
How can you work that out? I am unable to understand how I interpret this table in regards to the questions. I have looked through the textbook and lecture notes and I can't seem to find it. Could you please point me in the right direction? I suggest sketching 2 x 2 line graphs with the Y axis indicating mean values for either:
- (i) X and Y on the x-axis and separate lines for A and B; or
- (ii) A and B on the x-axis and separate lines for X and Y.
For the 2 x 2 table, it can also be helpful to work out the margin totals, i.e, the average scores for X, Y, A and B. Compare X and Y scores for one main effect. Compare A and B scores for the other main effect. And check whether or not the lines in the graph are parallel for the interaction effect. I understand by drawing a line graph that you can tell if there is an interaction effect but how do you know if there are main effects which are significant. Do you just assume that if the numbers are different that there is an effect? Yes, assume a sufficiently powerful study which would detect as significant any "obvious" differences between the means of the cells and/or groups.
84
[edit | edit source]
What is Cohen's rule of thumb for interpreting 2?
|
Where is this guideline from? Oops, sorry, this wasn't in the unit materials, that's a mistake; Cohen's (1988) guideline which is: 0.01 small, 0.059 medium, 0.135 large
87
[edit | edit source]
Consider an experiment with 2 factors, A and B, and a response, Y. Which of the following are true:
|
Can you explain how this works? Im not sure about ii? ii. When there is an interaction, then the main effects do not sufficiently explain the relations between the IVs and DV. Thus, the interaction explains additional variance in the DV above and beyond the main effects. When the interaction is not significant (or large) then the main effects provide a sufficient explanation and can be interpreted on their own. -- Jtneill - Talk 07:16, 13 June 2008 (UTC)
Power & effect size
[edit | edit source]104
[edit | edit source]
104. In a convenience sample survey, which aspects of the study is the researcher likely to have most control? (choose least to most control)
|
I thought that controlling sample size, even in convenience sample, was the easiest part? This is going to vary from somewhat study to study, and is somewhat subjective. Often N is limited by external contraints (e.g., time/money), but of course a researcher does ultimately usually decide and can control the sample size. ES one may have control over. e.g, in an experimental study, the "dosage" can be controlled, but in survey-type studies one tends to have less control. Critical alpha is very controllable. -- -- Jtneill - Talk - c 14:11, 27 May 2009 (UTC)
FAQ
[edit | edit source]Will we need to know the formulas?
You aren't expected to know or memorise formulae per se, but understanding formulae will be beneficial for understanding how key statistics are derived, what they are used for, how to interpret, assumptions, etc.