QB/d cp2.9
Appearance
< QB
- Quizbank now resides on MyOpenMath at https://www.myopenmath.com (although I hope Wikiversity can play an important role in helping students and teachers use these questions!)
- At the moment, most of the physics questions have already been transferred. To see them, join myopenmath.com as a student, and "enroll" in one or both of the following courses:
- Quizbank physics 1 (id 60675)
- Quizbank physics 2 (id 61712)
- Quizbank astronomy (id 63705)
The enrollment key for each course is 123. They are all is set to practice mode, giving students unlimited attempts at each question. Instructors can also print out copies of the quiz for classroom use. If you have any problems leave a message at user talk:Guy vandegrift.
- Latest essay: MyOpenMath/Pulling loose threads
- Latest lesson: Phasor algebra
See special:permalink/1893634 for a wikitext version of this quiz.
LaTexMarkup begin
[edit | edit source]%[[File:Quizbankqb_{{SUBPAGENAME}}.pdf|thumb|See[[:File:Quizbankqb_{{SUBPAGENAME}}.pdf]]]] %CurrentID: {{REVISIONID}} *'''PDF: [[:File:Quizbankqb_{{SUBPAGENAME}}.pdf]]'''%Required images: [[file:Wikiversity-logo-en.svg|45px]] %This code creates both the question and answer key using \newcommand\mytest %%% EDIT QUIZ INFO HERE %%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\quizname}{QB/d_cp2.9} \newcommand{\quiztype}{numerical}%[[Category:QB/numerical]] %%%%% PREAMBLE%%%%%%%%%%%% \newif\ifkey %estabkishes Boolean ifkey to turn on and off endnotes \documentclass[11pt]{exam} \RequirePackage{amssymb, amsfonts, amsmath, latexsym, verbatim, xspace, setspace,datetime} \RequirePackage{tikz, pgflibraryplotmarks, hyperref} \usepackage[left=.5in, right=.5in, bottom=.5in, top=.75in]{geometry} \usepackage{endnotes, multicol,textgreek} % \usepackage{graphicx} % \singlespacing %OR \onehalfspacing OR \doublespacing \parindent 0ex % Turns off paragraph indentation \hypersetup{ colorlinks=true, urlcolor=blue} % BEGIN DOCUMENT \begin{document} \title{d\_cp2.9} \author{The LaTex code that creates this quiz is released to the Public Domain\\ Attribution for each question is documented in the Appendix} \maketitle \begin{center} \includegraphics[width=0.15\textwidth]{666px-Wikiversity-logo-en.png} \\Latex markup at\\ \footnotesize{ \url{https://en.wikiversity.org/wiki/special:permalink/1893634}} \end{center} \begin{frame}{} \begin{multicols}{3} \tableofcontents \end{multicols} \end{frame} \pagebreak\section{Quiz} \keytrue \printanswers \begin{questions} \question What is the average current involved when a truck battery sets in motion 720\,C of charge in 4\,s while starting an engine? \ifkey\endnote{Example in Chapter 9 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:NLs93aS3@2/91-Electrical-Current\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1893634}}}\fi \begin{choices} \choice 1.229E+02\,A \choice 1.352E+02\,A \choice 1.488E+02\,A \choice 1.636E+02\,A \CorrectChoice 1.800E+02\,A \end{choices} \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=10\,C and \(\tau=\)0.02\,s. What is the current at \(t=\)1.000E-02\,s?\ifkey\endnote{Example in Chapter 9 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@10.1:NLs93aS3@5/9-1-Electrical-Current \_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1893634}}}\fi \begin{choices} \choice 2.506E+02\,A \choice 2.757E+02\,A \CorrectChoice 3.033E+02\,A \choice 3.336E+02\,A \choice 3.670E+02\,A \end{choices} \question Calculate the drift speed of electrons in a copper wire with a diameter of 2.053\,mm carrying a 20\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol.\ifkey\endnote{Example 9.3 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:bsLusJYw@5/92-Model-of-Conduction-in-Meta\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1893634}}}\fi \begin{choices} \choice 4.111E-04\,m/s \CorrectChoice 4.522E-04\,m/s \choice 4.974E-04\,m/s \choice 5.472E-04\,m/s \choice 6.019E-04\,m/s \end{choices} \question A make-believe metal has a density of 8.800E+03\,kg/m\textsuperscript{3} and an atomic mass of 63.54\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter.\ifkey\endnote{[[user:Guy vandegrift]] Public Domain\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1893634}}}\fi \begin{choices} \choice 5.695E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 6.264E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 6.890E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 7.579E+28\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 8.337E+28\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} \question A device requires consumes 100\,W of power and requires 0.87\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density.\ifkey\endnote{Example 9.4 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:bsLusJYw@5/92-Model-of-Conduction-in-Meta\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1893634}}}\fi \begin{choices} \choice 1.367E+05\,A/m\textsuperscript{2} \choice 1.504E+05\,A/m\textsuperscript{2} \CorrectChoice 1.654E+05\,A/m\textsuperscript{2} \choice 1.819E+05\,A/m\textsuperscript{2} \choice 2.001E+05\,A/m\textsuperscript{2} \end{choices} \question Calculate the resistance of a 12-gauge copper wire that is 5\,m long and carries a current of 10\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}.\ifkey\endnote{Example in Chapter 9 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:AoUIVAcf@3/93-Resistivity-and-Resistance\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1893634}}}\fi \begin{choices} \choice 1.907E-02\,\textOmega\ \choice 2.097E-02\,\textOmega\ \choice 2.307E-02\,\textOmega\ \CorrectChoice 2.538E-02\,\textOmega\ \choice 2.792E-02\,\textOmega\ \end{choices} \question Calculate the electric field in a 12-gauge copper wire that is 5\,m long and carries a current of 10\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}.\ifkey\endnote{Example in Chapter 9 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:AoUIVAcf@3/93-Resistivity-and-Resistance\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1893634}}}\fi \begin{choices} \CorrectChoice 5.076E-05\,V/m \choice 5.583E-05\,V/m \choice 6.141E-05\,V/m \choice 6.756E-05\,V/m \choice 7.431E-05\,V/m \end{choices} \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 3.5\,\textOmega\ at a temperature of 20\(^\circ\)C and that the temperature coefficient of expansion is 4.500E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 2.850E+03\,\(^\circ\)C?\ifkey\endnote{Example 9.6 from OpenStax University Physics2: [[user:Guy vandegrift]] Public Domain CC0\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1893634}}}\fi \begin{choices} \choice 4.578E+01\,\textOmega\ \CorrectChoice 4.807E+01\,\textOmega\ \choice 5.048E+01\,\textOmega\ \choice 5.300E+01\,\textOmega\ \choice 5.565E+01\,\textOmega\ \end{choices} \question A DC winch moter draws 20\,amps at 115\,volts as it lifts a 4.900E+03\,N weight at a constant speed of 0.333\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance.\ifkey\endnote{Example 9.9 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:kkFcweJV@3/95-Electrical-Energy-and-Power\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1893634}}}\fi \begin{choices} \choice 1.255E+00\,\textOmega\ \choice 1.381E+00\,\textOmega\ \choice 1.519E+00\,\textOmega\ \CorrectChoice 1.671E+00\,\textOmega\ \choice 1.838E+00\,\textOmega\ \end{choices} \question What is consumer cost to operate one 100-W incandescent bulb for 3\,hours per day for 1 year (365 days) if the cost of electricity is \$0.1 per kilowatt-hour?\ifkey\endnote{Example 9.10 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:kkFcweJV@3/95-Electrical-Energy-and-Power\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1893634}}}\fi \begin{choices} \choice \$8.227E+00 \choice \$9.050E+00 \choice \$9.955E+00 \CorrectChoice \$1.095E+01 \choice \$1.205E+01 \end{choices} \end{questions} \newpage \section{Renditions} %%% Renditions %%%% \subsection{}%%%% subsection 1 \begin{questions} %%%%%%% begin questions \question What is the average current involved when a truck battery sets in motion 702\,C of charge in 2.92\,s while starting an engine? \begin{choices} %%%%%%% begin choices \CorrectChoice 2.404E+02\,A \choice 2.645E+02\,A \choice 2.909E+02\,A \choice 3.200E+02\,A \choice 3.520E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 889\,C of charge in 3.64\,s while starting an engine? \begin{choices} %%%%%%% begin choices \CorrectChoice 2.442E+02\,A \choice 2.687E+02\,A \choice 2.955E+02\,A \choice 3.251E+02\,A \choice 3.576E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 559\,C of charge in 4.13\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 9.245E+01\,A \choice 1.017E+02\,A \choice 1.119E+02\,A \choice 1.230E+02\,A \CorrectChoice 1.354E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 701\,C of charge in 4.98\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 1.280E+02\,A \CorrectChoice 1.408E+02\,A \choice 1.548E+02\,A \choice 1.703E+02\,A \choice 1.874E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 669\,C of charge in 4.3\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 1.063E+02\,A \choice 1.169E+02\,A \choice 1.286E+02\,A \choice 1.414E+02\,A \CorrectChoice 1.556E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 618\,C of charge in 2.28\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 2.240E+02\,A \choice 2.464E+02\,A \CorrectChoice 2.711E+02\,A \choice 2.982E+02\,A \choice 3.280E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 682\,C of charge in 5.29\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 1.065E+02\,A \choice 1.172E+02\,A \CorrectChoice 1.289E+02\,A \choice 1.418E+02\,A \choice 1.560E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 760\,C of charge in 5.35\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 1.291E+02\,A \CorrectChoice 1.421E+02\,A \choice 1.563E+02\,A \choice 1.719E+02\,A \choice 1.891E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 572\,C of charge in 3.33\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 1.173E+02\,A \choice 1.291E+02\,A \choice 1.420E+02\,A \choice 1.562E+02\,A \CorrectChoice 1.718E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 659\,C of charge in 5.48\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 8.214E+01\,A \choice 9.035E+01\,A \choice 9.938E+01\,A \choice 1.093E+02\,A \CorrectChoice 1.203E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 775\,C of charge in 2.9\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 2.209E+02\,A \choice 2.429E+02\,A \CorrectChoice 2.672E+02\,A \choice 2.940E+02\,A \choice 3.234E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 779\,C of charge in 3.96\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 1.626E+02\,A \choice 1.788E+02\,A \CorrectChoice 1.967E+02\,A \choice 2.164E+02\,A \choice 2.380E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 622\,C of charge in 5.69\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 9.034E+01\,A \choice 9.938E+01\,A \CorrectChoice 1.093E+02\,A \choice 1.202E+02\,A \choice 1.323E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 821\,C of charge in 5.51\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 1.231E+02\,A \choice 1.355E+02\,A \CorrectChoice 1.490E+02\,A \choice 1.639E+02\,A \choice 1.803E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 728\,C of charge in 3.94\,s while starting an engine? \begin{choices} %%%%%%% begin choices \CorrectChoice 1.848E+02\,A \choice 2.032E+02\,A \choice 2.236E+02\,A \choice 2.459E+02\,A \choice 2.705E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 546\,C of charge in 3.7\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 1.220E+02\,A \choice 1.342E+02\,A \CorrectChoice 1.476E+02\,A \choice 1.623E+02\,A \choice 1.786E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 537\,C of charge in 5.08\,s while starting an engine? \begin{choices} %%%%%%% begin choices \choice 8.736E+01\,A \choice 9.610E+01\,A \CorrectChoice 1.057E+02\,A \choice 1.163E+02\,A \choice 1.279E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 631\,C of charge in 3.8\,s while starting an engine? \begin{choices} %%%%%%% begin choices \CorrectChoice 1.661E+02\,A \choice 1.827E+02\,A \choice 2.009E+02\,A \choice 2.210E+02\,A \choice 2.431E+02\,A \end{choices} %%% end choices \question What is the average current involved when a truck battery sets in motion 738\,C of charge in 3.87\,s while starting an engine? \begin{choices} %%%%%%% begin choices \CorrectChoice 1.907E+02\,A \choice 2.098E+02\,A \choice 2.307E+02\,A \choice 2.538E+02\,A \choice 2.792E+02\,A \end{choices} %%% end choices %\pagebreak %\end{choices}%?????????????? \end{questions}%%%%%%%% end questions \subsection{}%%%% subsection 2 \begin{questions} %%%%%%% begin questions \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=38\,C and \(\tau=\)0.0106\,s. What is the current at \(t=\)0.0123\,s? \begin{choices} %%%%%%% begin choices \choice 1.021E+03\,A \CorrectChoice 1.123E+03\,A \choice 1.236E+03\,A \choice 1.359E+03\,A \choice 1.495E+03\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=24\,C and \(\tau=\)0.0248\,s. What is the current at \(t=\)0.0122\,s? \begin{choices} %%%%%%% begin choices \choice 4.042E+02\,A \choice 4.446E+02\,A \choice 4.890E+02\,A \choice 5.379E+02\,A \CorrectChoice 5.917E+02\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=87\,C and \(\tau=\)0.0154\,s. What is the current at \(t=\)0.0211\,s? \begin{choices} %%%%%%% begin choices \CorrectChoice 1.435E+03\,A \choice 1.579E+03\,A \choice 1.737E+03\,A \choice 1.910E+03\,A \choice 2.102E+03\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=23\,C and \(\tau=\)0.0204\,s. What is the current at \(t=\)0.0106\,s? \begin{choices} %%%%%%% begin choices \choice 6.096E+02\,A \CorrectChoice 6.706E+02\,A \choice 7.376E+02\,A \choice 8.114E+02\,A \choice 8.925E+02\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=11\,C and \(\tau=\)0.0162\,s. What is the current at \(t=\)0.0249\,s? \begin{choices} %%%%%%% begin choices \choice 9.972E+01\,A \choice 1.097E+02\,A \choice 1.207E+02\,A \choice 1.327E+02\,A \CorrectChoice 1.460E+02\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=78\,C and \(\tau=\)0.0244\,s. What is the current at \(t=\)0.0225\,s? \begin{choices} %%%%%%% begin choices \CorrectChoice 1.271E+03\,A \choice 1.398E+03\,A \choice 1.538E+03\,A \choice 1.692E+03\,A \choice 1.861E+03\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=18\,C and \(\tau=\)0.0169\,s. What is the current at \(t=\)0.0137\,s? \begin{choices} %%%%%%% begin choices \choice 3.913E+02\,A \choice 4.305E+02\,A \CorrectChoice 4.735E+02\,A \choice 5.209E+02\,A \choice 5.729E+02\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=16\,C and \(\tau=\)0.0214\,s. What is the current at \(t=\)0.0207\,s? \begin{choices} %%%%%%% begin choices \choice 2.135E+02\,A \choice 2.349E+02\,A \choice 2.584E+02\,A \CorrectChoice 2.842E+02\,A \choice 3.126E+02\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=84\,C and \(\tau=\)0.0199\,s. What is the current at \(t=\)0.0104\,s? \begin{choices} %%%%%%% begin choices \choice 2.275E+03\,A \CorrectChoice 2.503E+03\,A \choice 2.753E+03\,A \choice 3.029E+03\,A \choice 3.331E+03\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=27\,C and \(\tau=\)0.0154\,s. What is the current at \(t=\)0.0177\,s? \begin{choices} %%%%%%% begin choices \choice 4.591E+02\,A \choice 5.050E+02\,A \CorrectChoice 5.555E+02\,A \choice 6.111E+02\,A \choice 6.722E+02\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=38\,C and \(\tau=\)0.0167\,s. What is the current at \(t=\)0.0183\,s? \begin{choices} %%%%%%% begin choices \choice 5.715E+02\,A \choice 6.286E+02\,A \choice 6.915E+02\,A \CorrectChoice 7.606E+02\,A \choice 8.367E+02\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=30\,C and \(\tau=\)0.0178\,s. What is the current at \(t=\)0.0161\,s? \begin{choices} %%%%%%% begin choices \choice 5.125E+02\,A \choice 5.638E+02\,A \choice 6.201E+02\,A \CorrectChoice 6.822E+02\,A \choice 7.504E+02\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=58\,C and \(\tau=\)0.0249\,s. What is the current at \(t=\)0.0191\,s? \begin{choices} %%%%%%% begin choices \choice 8.127E+02\,A \choice 8.939E+02\,A \choice 9.833E+02\,A \CorrectChoice 1.082E+03\,A \choice 1.190E+03\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=97\,C and \(\tau=\)0.0132\,s. What is the current at \(t=\)0.0225\,s? \begin{choices} %%%%%%% begin choices \CorrectChoice 1.336E+03\,A \choice 1.470E+03\,A \choice 1.617E+03\,A \choice 1.779E+03\,A \choice 1.957E+03\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=85\,C and \(\tau=\)0.021\,s. What is the current at \(t=\)0.0128\,s? \begin{choices} %%%%%%% begin choices \choice 1.503E+03\,A \choice 1.653E+03\,A \choice 1.818E+03\,A \choice 2.000E+03\,A \CorrectChoice 2.200E+03\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=42\,C and \(\tau=\)0.0166\,s. What is the current at \(t=\)0.0156\,s? \begin{choices} %%%%%%% begin choices \CorrectChoice 9.886E+02\,A \choice 1.087E+03\,A \choice 1.196E+03\,A \choice 1.316E+03\,A \choice 1.447E+03\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=52\,C and \(\tau=\)0.018\,s. What is the current at \(t=\)0.0207\,s? \begin{choices} %%%%%%% begin choices \choice 6.872E+02\,A \choice 7.560E+02\,A \choice 8.316E+02\,A \CorrectChoice 9.147E+02\,A \choice 1.006E+03\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=63\,C and \(\tau=\)0.0149\,s. What is the current at \(t=\)0.0172\,s? \begin{choices} %%%%%%% begin choices \choice 1.212E+03\,A \CorrectChoice 1.333E+03\,A \choice 1.466E+03\,A \choice 1.613E+03\,A \choice 1.774E+03\,A \end{choices} %%% end choices \question The charge passing a plane intersecting a wire is \(Q(t)=Q_0\left(1-e^{-t/\tau}\right)\), where \(Q_0\)=91\,C and \(\tau=\)0.0156\,s. What is the current at \(t=\)0.0131\,s? \begin{choices} %%%%%%% begin choices \choice 2.082E+03\,A \choice 2.290E+03\,A \CorrectChoice 2.519E+03\,A \choice 2.771E+03\,A \choice 3.048E+03\,A \end{choices} %%% end choices %\pagebreak %\end{choices}%?????????????? \end{questions}%%%%%%%% end questions \subsection{}%%%% subsection 3 \begin{questions} %%%%%%% begin questions \question Calculate the drift speed of electrons in a copper wire with a diameter of 3.32\,mm carrying a 18.4\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 1.195E-04\,m/s \choice 1.315E-04\,m/s \choice 1.446E-04\,m/s \CorrectChoice 1.591E-04\,m/s \choice 1.750E-04\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 4.49\,mm carrying a 11.6\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 4.120E-05\,m/s \choice 4.532E-05\,m/s \choice 4.985E-05\,m/s \CorrectChoice 5.483E-05\,m/s \choice 6.032E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 5.82\,mm carrying a 9.11\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 1.926E-05\,m/s \choice 2.118E-05\,m/s \choice 2.330E-05\,m/s \CorrectChoice 2.563E-05\,m/s \choice 2.819E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 5.24\,mm carrying a 1.8\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \CorrectChoice 6.247E-06\,m/s \choice 6.872E-06\,m/s \choice 7.559E-06\,m/s \choice 8.315E-06\,m/s \choice 9.146E-06\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 2.17\,mm carrying a 19.4\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 3.569E-04\,m/s \CorrectChoice 3.926E-04\,m/s \choice 4.319E-04\,m/s \choice 4.750E-04\,m/s \choice 5.226E-04\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 4.79\,mm carrying a 10.9\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 3.401E-05\,m/s \choice 3.741E-05\,m/s \choice 4.116E-05\,m/s \CorrectChoice 4.527E-05\,m/s \choice 4.980E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 5.46\,mm carrying a 8.19\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 2.380E-05\,m/s \CorrectChoice 2.618E-05\,m/s \choice 2.880E-05\,m/s \choice 3.168E-05\,m/s \choice 3.485E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 5.71\,mm carrying a 7.54\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \CorrectChoice 2.204E-05\,m/s \choice 2.424E-05\,m/s \choice 2.667E-05\,m/s \choice 2.933E-05\,m/s \choice 3.227E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 5.46\,mm carrying a 5.05\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \CorrectChoice 1.614E-05\,m/s \choice 1.776E-05\,m/s \choice 1.953E-05\,m/s \choice 2.149E-05\,m/s \choice 2.363E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 5.47\,mm carrying a 3.48\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 1.008E-05\,m/s \CorrectChoice 1.108E-05\,m/s \choice 1.219E-05\,m/s \choice 1.341E-05\,m/s \choice 1.475E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 4.38\,mm carrying a 5.79\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 2.615E-05\,m/s \CorrectChoice 2.876E-05\,m/s \choice 3.164E-05\,m/s \choice 3.480E-05\,m/s \choice 3.828E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 3.3\,mm carrying a 18.5\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 1.472E-04\,m/s \CorrectChoice 1.619E-04\,m/s \choice 1.781E-04\,m/s \choice 1.959E-04\,m/s \choice 2.155E-04\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 2.72\,mm carrying a 16.2\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \CorrectChoice 2.087E-04\,m/s \choice 2.295E-04\,m/s \choice 2.525E-04\,m/s \choice 2.777E-04\,m/s \choice 3.055E-04\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 5.33\,mm carrying a 5.1\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \CorrectChoice 1.711E-05\,m/s \choice 1.882E-05\,m/s \choice 2.070E-05\,m/s \choice 2.277E-05\,m/s \choice 2.505E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 4.9\,mm carrying a 6.43\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 2.109E-05\,m/s \choice 2.320E-05\,m/s \CorrectChoice 2.552E-05\,m/s \choice 2.807E-05\,m/s \choice 3.088E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 3.17\,mm carrying a 12.0\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \CorrectChoice 1.138E-04\,m/s \choice 1.252E-04\,m/s \choice 1.377E-04\,m/s \choice 1.515E-04\,m/s \choice 1.666E-04\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 3.53\,mm carrying a 2.8\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 1.947E-05\,m/s \CorrectChoice 2.141E-05\,m/s \choice 2.355E-05\,m/s \choice 2.591E-05\,m/s \choice 2.850E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 5.19\,mm carrying a 18.2\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 5.321E-05\,m/s \choice 5.853E-05\,m/s \CorrectChoice 6.439E-05\,m/s \choice 7.083E-05\,m/s \choice 7.791E-05\,m/s \end{choices} %%% end choices \question Calculate the drift speed of electrons in a copper wire with a diameter of 3.33\,mm carrying a 13.8\,A current, given that there is one free electron per copper atom. The density of copper is 8.80\,x\,10\textsuperscript{3}kg/m\textsuperscript{3} and the atomic mass of copper is 63.54\,g/mol. Avagadro's number is 6.02\,x\,10\textsuperscript{23}atoms/mol. \begin{choices} %%%%%%% begin choices \choice 8.910E-05\,m/s \choice 9.801E-05\,m/s \choice 1.078E-04\,m/s \CorrectChoice 1.186E-04\,m/s \choice 1.305E-04\,m/s \end{choices} %%% end choices %\pagebreak %\end{choices}%?????????????? \end{questions}%%%%%%%% end questions \subsection{}%%%% subsection 4 \begin{questions} %%%%%%% begin questions \question A make-believe metal has a density of 5.880E+03\,kg/m\textsuperscript{3} and an atomic mass of 73.2\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 4.396E+28\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 4.836E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 5.319E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 5.851E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 6.436E+28\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 1.180E+04\,kg/m\textsuperscript{3} and an atomic mass of 121.0\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 4.010E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 4.411E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 4.852E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 5.337E+28\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 5.871E+28\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 1.580E+04\,kg/m\textsuperscript{3} and an atomic mass of 41.5\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \CorrectChoice 2.292E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.521E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.773E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 3.051E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 3.356E+29\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 1.480E+04\,kg/m\textsuperscript{3} and an atomic mass of 196.0\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \CorrectChoice 4.546E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 5.000E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 5.500E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 6.050E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 6.655E+28\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 1.300E+04\,kg/m\textsuperscript{3} and an atomic mass of 75.7\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 9.398E+28\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 1.034E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.137E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.251E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.376E+29\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 3.230E+03\,kg/m\textsuperscript{3} and an atomic mass of 116.0\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 1.385E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.524E+28\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 1.676E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.844E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.028E+28\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 3.470E+03\,kg/m\textsuperscript{3} and an atomic mass of 33.8\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \CorrectChoice 6.180E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 6.798E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 7.478E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 8.226E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 9.049E+28\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 3.530E+03\,kg/m\textsuperscript{3} and an atomic mass of 10.5\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 1.673E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.840E+29\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 2.024E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.226E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.449E+29\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 6.650E+03\,kg/m\textsuperscript{3} and an atomic mass of 67.5\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 4.456E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 4.901E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 5.392E+28\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 5.931E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 6.524E+28\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 7.000E+03\,kg/m\textsuperscript{3} and an atomic mass of 89.4\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 3.219E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 3.541E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 3.896E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 4.285E+28\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 4.714E+28\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 8.060E+03\,kg/m\textsuperscript{3} and an atomic mass of 19.7\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 1.850E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.036E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.239E+29\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 2.463E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.709E+29\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 1.810E+04\,kg/m\textsuperscript{3} and an atomic mass of 14.0\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 5.847E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 6.432E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 7.075E+29\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 7.783E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 8.561E+29\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 5.880E+03\,kg/m\textsuperscript{3} and an atomic mass of 87.4\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 3.347E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 3.682E+28\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 4.050E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 4.455E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 4.901E+28\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 1.510E+04\,kg/m\textsuperscript{3} and an atomic mass of 33.6\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 2.236E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.459E+29\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 2.705E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.976E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 3.274E+29\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 1.050E+04\,kg/m\textsuperscript{3} and an atomic mass of 58.8\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \CorrectChoice 1.075E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.183E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.301E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.431E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.574E+29\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 2.670E+03\,kg/m\textsuperscript{3} and an atomic mass of 40.9\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \CorrectChoice 3.930E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 4.323E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 4.755E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 5.231E+28\,e\textsuperscript{-}/m\textsuperscript{3} \choice 5.754E+28\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 1.430E+04\,kg/m\textsuperscript{3} and an atomic mass of 37.8\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 1.882E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.070E+29\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 2.277E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.505E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 2.756E+29\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 1.480E+04\,kg/m\textsuperscript{3} and an atomic mass of 73.3\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \choice 1.105E+29\,e\textsuperscript{-}/m\textsuperscript{3} \CorrectChoice 1.215E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.337E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.471E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.618E+29\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices \question A make-believe metal has a density of 8.690E+03\,kg/m\textsuperscript{3} and an atomic mass of 48.4\,g/mol. Taking Avogadro's number to be 6.020E+23\,atoms/mol and assuming one free electron per atom, calculate the number of free electrons per cubic meter. \begin{choices} %%%%%%% begin choices \CorrectChoice 1.081E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.189E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.308E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.439E+29\,e\textsuperscript{-}/m\textsuperscript{3} \choice 1.582E+29\,e\textsuperscript{-}/m\textsuperscript{3} \end{choices} %%% end choices %\pagebreak %\end{choices}%?????????????? \end{questions}%%%%%%%% end questions \subsection{}%%%% subsection 5 \begin{questions} %%%%%%% begin questions \question A device requires consumes 121\,W of power and requires 5.12\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 8.849E+05\,A/m\textsuperscript{2} \CorrectChoice 9.734E+05\,A/m\textsuperscript{2} \choice 1.071E+06\,A/m\textsuperscript{2} \choice 1.178E+06\,A/m\textsuperscript{2} \choice 1.296E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 81\,W of power and requires 2.34\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 3.342E+05\,A/m\textsuperscript{2} \choice 3.677E+05\,A/m\textsuperscript{2} \choice 4.044E+05\,A/m\textsuperscript{2} \CorrectChoice 4.449E+05\,A/m\textsuperscript{2} \choice 4.894E+05\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 168\,W of power and requires 11.0\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 1.901E+06\,A/m\textsuperscript{2} \CorrectChoice 2.091E+06\,A/m\textsuperscript{2} \choice 2.300E+06\,A/m\textsuperscript{2} \choice 2.530E+06\,A/m\textsuperscript{2} \choice 2.783E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 73\,W of power and requires 9.14\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 1.187E+06\,A/m\textsuperscript{2} \choice 1.306E+06\,A/m\textsuperscript{2} \choice 1.436E+06\,A/m\textsuperscript{2} \choice 1.580E+06\,A/m\textsuperscript{2} \CorrectChoice 1.738E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 78\,W of power and requires 11.3\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 1.953E+06\,A/m\textsuperscript{2} \CorrectChoice 2.148E+06\,A/m\textsuperscript{2} \choice 2.363E+06\,A/m\textsuperscript{2} \choice 2.599E+06\,A/m\textsuperscript{2} \choice 2.859E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 72\,W of power and requires 11.7\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 1.519E+06\,A/m\textsuperscript{2} \choice 1.671E+06\,A/m\textsuperscript{2} \choice 1.838E+06\,A/m\textsuperscript{2} \choice 2.022E+06\,A/m\textsuperscript{2} \CorrectChoice 2.224E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 84\,W of power and requires 3.66\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 5.751E+05\,A/m\textsuperscript{2} \choice 6.326E+05\,A/m\textsuperscript{2} \CorrectChoice 6.958E+05\,A/m\textsuperscript{2} \choice 7.654E+05\,A/m\textsuperscript{2} \choice 8.419E+05\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 172\,W of power and requires 2.21\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 3.157E+05\,A/m\textsuperscript{2} \choice 3.472E+05\,A/m\textsuperscript{2} \choice 3.820E+05\,A/m\textsuperscript{2} \CorrectChoice 4.202E+05\,A/m\textsuperscript{2} \choice 4.622E+05\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 142\,W of power and requires 12.1\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \CorrectChoice 2.300E+06\,A/m\textsuperscript{2} \choice 2.530E+06\,A/m\textsuperscript{2} \choice 2.783E+06\,A/m\textsuperscript{2} \choice 3.062E+06\,A/m\textsuperscript{2} \choice 3.368E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 166\,W of power and requires 9.99\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 1.570E+06\,A/m\textsuperscript{2} \choice 1.727E+06\,A/m\textsuperscript{2} \CorrectChoice 1.899E+06\,A/m\textsuperscript{2} \choice 2.089E+06\,A/m\textsuperscript{2} \choice 2.298E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 156\,W of power and requires 5.42\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 7.742E+05\,A/m\textsuperscript{2} \choice 8.516E+05\,A/m\textsuperscript{2} \choice 9.367E+05\,A/m\textsuperscript{2} \CorrectChoice 1.030E+06\,A/m\textsuperscript{2} \choice 1.133E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 126\,W of power and requires 1.11\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \CorrectChoice 2.110E+05\,A/m\textsuperscript{2} \choice 2.321E+05\,A/m\textsuperscript{2} \choice 2.553E+05\,A/m\textsuperscript{2} \choice 2.809E+05\,A/m\textsuperscript{2} \choice 3.090E+05\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 177\,W of power and requires 6.82\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 9.741E+05\,A/m\textsuperscript{2} \choice 1.072E+06\,A/m\textsuperscript{2} \choice 1.179E+06\,A/m\textsuperscript{2} \CorrectChoice 1.297E+06\,A/m\textsuperscript{2} \choice 1.426E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 88\,W of power and requires 11.3\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 1.467E+06\,A/m\textsuperscript{2} \choice 1.614E+06\,A/m\textsuperscript{2} \choice 1.775E+06\,A/m\textsuperscript{2} \choice 1.953E+06\,A/m\textsuperscript{2} \CorrectChoice 2.148E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 196\,W of power and requires 2.4\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \CorrectChoice 4.563E+05\,A/m\textsuperscript{2} \choice 5.019E+05\,A/m\textsuperscript{2} \choice 5.521E+05\,A/m\textsuperscript{2} \choice 6.073E+05\,A/m\textsuperscript{2} \choice 6.680E+05\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 185\,W of power and requires 10.1\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \CorrectChoice 1.920E+06\,A/m\textsuperscript{2} \choice 2.112E+06\,A/m\textsuperscript{2} \choice 2.323E+06\,A/m\textsuperscript{2} \choice 2.556E+06\,A/m\textsuperscript{2} \choice 2.811E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 120\,W of power and requires 4.85\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 7.620E+05\,A/m\textsuperscript{2} \choice 8.382E+05\,A/m\textsuperscript{2} \CorrectChoice 9.221E+05\,A/m\textsuperscript{2} \choice 1.014E+06\,A/m\textsuperscript{2} \choice 1.116E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 103\,W of power and requires 6.3\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \choice 8.999E+05\,A/m\textsuperscript{2} \choice 9.899E+05\,A/m\textsuperscript{2} \choice 1.089E+06\,A/m\textsuperscript{2} \CorrectChoice 1.198E+06\,A/m\textsuperscript{2} \choice 1.317E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices \question A device requires consumes 176\,W of power and requires 11.9\,A of current which is supplied by a single core 10-guage (2.588\,mm diameter) wire. Find the magnitude of the average current density. \begin{choices} %%%%%%% begin choices \CorrectChoice 2.262E+06\,A/m\textsuperscript{2} \choice 2.489E+06\,A/m\textsuperscript{2} \choice 2.737E+06\,A/m\textsuperscript{2} \choice 3.011E+06\,A/m\textsuperscript{2} \choice 3.312E+06\,A/m\textsuperscript{2} \end{choices} %%% end choices %\pagebreak %\end{choices}%?????????????? \end{questions}%%%%%%%% end questions \subsection{}%%%% subsection 6 \begin{questions} %%%%%%% begin questions \question Calculate the resistance of a 12-gauge copper wire that is 97\,m long and carries a current of 29\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \CorrectChoice 4.923E-01\,\textOmega\ \choice 5.416E-01\,\textOmega\ \choice 5.957E-01\,\textOmega\ \choice 6.553E-01\,\textOmega\ \choice 7.208E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 52\,m long and carries a current of 99\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 1.983E-01\,\textOmega\ \choice 2.181E-01\,\textOmega\ \choice 2.399E-01\,\textOmega\ \CorrectChoice 2.639E-01\,\textOmega\ \choice 2.903E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 69\,m long and carries a current of 98\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 2.631E-01\,\textOmega\ \choice 2.894E-01\,\textOmega\ \choice 3.184E-01\,\textOmega\ \CorrectChoice 3.502E-01\,\textOmega\ \choice 3.852E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 14\,m long and carries a current of 38\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 5.873E-02\,\textOmega\ \choice 6.460E-02\,\textOmega\ \CorrectChoice 7.106E-02\,\textOmega\ \choice 7.816E-02\,\textOmega\ \choice 8.598E-02\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 13\,m long and carries a current of 22\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 4.957E-02\,\textOmega\ \choice 5.453E-02\,\textOmega\ \choice 5.998E-02\,\textOmega\ \CorrectChoice 6.598E-02\,\textOmega\ \choice 7.258E-02\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 48\,m long and carries a current of 50\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 2.215E-01\,\textOmega\ \CorrectChoice 2.436E-01\,\textOmega\ \choice 2.680E-01\,\textOmega\ \choice 2.948E-01\,\textOmega\ \choice 3.243E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 42\,m long and carries a current of 63\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 1.938E-01\,\textOmega\ \CorrectChoice 2.132E-01\,\textOmega\ \choice 2.345E-01\,\textOmega\ \choice 2.579E-01\,\textOmega\ \choice 2.837E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 10\,m long and carries a current of 41\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 3.467E-02\,\textOmega\ \choice 3.813E-02\,\textOmega\ \choice 4.195E-02\,\textOmega\ \choice 4.614E-02\,\textOmega\ \CorrectChoice 5.076E-02\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 10\,m long and carries a current of 69\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 4.614E-02\,\textOmega\ \CorrectChoice 5.076E-02\,\textOmega\ \choice 5.583E-02\,\textOmega\ \choice 6.141E-02\,\textOmega\ \choice 6.756E-02\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 78\,m long and carries a current of 82\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 2.974E-01\,\textOmega\ \choice 3.272E-01\,\textOmega\ \choice 3.599E-01\,\textOmega\ \CorrectChoice 3.959E-01\,\textOmega\ \choice 4.355E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 19\,m long and carries a current of 59\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 7.970E-02\,\textOmega\ \choice 8.767E-02\,\textOmega\ \CorrectChoice 9.644E-02\,\textOmega\ \choice 1.061E-01\,\textOmega\ \choice 1.167E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 90\,m long and carries a current of 34\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 3.432E-01\,\textOmega\ \choice 3.775E-01\,\textOmega\ \choice 4.153E-01\,\textOmega\ \CorrectChoice 4.568E-01\,\textOmega\ \choice 5.025E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 45\,m long and carries a current of 51\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 1.716E-01\,\textOmega\ \choice 1.888E-01\,\textOmega\ \choice 2.076E-01\,\textOmega\ \CorrectChoice 2.284E-01\,\textOmega\ \choice 2.512E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 15\,m long and carries a current of 27\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 5.200E-02\,\textOmega\ \choice 5.720E-02\,\textOmega\ \choice 6.292E-02\,\textOmega\ \choice 6.921E-02\,\textOmega\ \CorrectChoice 7.613E-02\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 11\,m long and carries a current of 94\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 3.813E-02\,\textOmega\ \choice 4.195E-02\,\textOmega\ \choice 4.614E-02\,\textOmega\ \choice 5.076E-02\,\textOmega\ \CorrectChoice 5.583E-02\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 30\,m long and carries a current of 31\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 1.384E-01\,\textOmega\ \CorrectChoice 1.523E-01\,\textOmega\ \choice 1.675E-01\,\textOmega\ \choice 1.842E-01\,\textOmega\ \choice 2.027E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 86\,m long and carries a current of 97\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \CorrectChoice 4.365E-01\,\textOmega\ \choice 4.801E-01\,\textOmega\ \choice 5.282E-01\,\textOmega\ \choice 5.810E-01\,\textOmega\ \choice 6.391E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 81\,m long and carries a current of 32\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 3.737E-01\,\textOmega\ \CorrectChoice 4.111E-01\,\textOmega\ \choice 4.522E-01\,\textOmega\ \choice 4.975E-01\,\textOmega\ \choice 5.472E-01\,\textOmega\ \end{choices} %%% end choices \question Calculate the resistance of a 12-gauge copper wire that is 59\,m long and carries a current of 26\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \CorrectChoice 2.995E-01\,\textOmega\ \choice 3.294E-01\,\textOmega\ \choice 3.623E-01\,\textOmega\ \choice 3.986E-01\,\textOmega\ \choice 4.384E-01\,\textOmega\ \end{choices} %%% end choices %\pagebreak %\end{choices}%?????????????? \end{questions}%%%%%%%% end questions \subsection{}%%%% subsection 7 \begin{questions} %%%%%%% begin questions \question Calculate the electric field in a 12-gauge copper wire that is 75\,m long and carries a current of 21\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 7.280E-05\,V/m \choice 8.008E-05\,V/m \choice 8.809E-05\,V/m \choice 9.690E-05\,V/m \CorrectChoice 1.066E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 78\,m long and carries a current of 24\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \CorrectChoice 1.218E-04\,V/m \choice 1.340E-04\,V/m \choice 1.474E-04\,V/m \choice 1.621E-04\,V/m \choice 1.783E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 23\,m long and carries a current of 64\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 2.953E-04\,V/m \CorrectChoice 3.248E-04\,V/m \choice 3.573E-04\,V/m \choice 3.930E-04\,V/m \choice 4.324E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 13\,m long and carries a current of 59\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 2.250E-04\,V/m \choice 2.475E-04\,V/m \choice 2.722E-04\,V/m \CorrectChoice 2.995E-04\,V/m \choice 3.294E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 26\,m long and carries a current of 24\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 9.152E-05\,V/m \choice 1.007E-04\,V/m \choice 1.107E-04\,V/m \CorrectChoice 1.218E-04\,V/m \choice 1.340E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 62\,m long and carries a current of 52\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 1.983E-04\,V/m \choice 2.181E-04\,V/m \choice 2.399E-04\,V/m \CorrectChoice 2.639E-04\,V/m \choice 2.903E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 21\,m long and carries a current of 42\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 1.602E-04\,V/m \choice 1.762E-04\,V/m \choice 1.938E-04\,V/m \CorrectChoice 2.132E-04\,V/m \choice 2.345E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 17\,m long and carries a current of 56\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 1.941E-04\,V/m \choice 2.135E-04\,V/m \choice 2.349E-04\,V/m \choice 2.584E-04\,V/m \CorrectChoice 2.842E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 25\,m long and carries a current of 43\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \CorrectChoice 2.182E-04\,V/m \choice 2.401E-04\,V/m \choice 2.641E-04\,V/m \choice 2.905E-04\,V/m \choice 3.195E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 64\,m long and carries a current of 76\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 2.635E-04\,V/m \choice 2.898E-04\,V/m \choice 3.188E-04\,V/m \choice 3.507E-04\,V/m \CorrectChoice 3.857E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 18\,m long and carries a current of 22\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \CorrectChoice 1.117E-04\,V/m \choice 1.228E-04\,V/m \choice 1.351E-04\,V/m \choice 1.486E-04\,V/m \choice 1.635E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 16\,m long and carries a current of 58\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 2.212E-04\,V/m \choice 2.433E-04\,V/m \choice 2.676E-04\,V/m \CorrectChoice 2.944E-04\,V/m \choice 3.238E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 99\,m long and carries a current of 71\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \CorrectChoice 3.604E-04\,V/m \choice 3.964E-04\,V/m \choice 4.360E-04\,V/m \choice 4.796E-04\,V/m \choice 5.276E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 44\,m long and carries a current of 78\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 2.704E-04\,V/m \choice 2.974E-04\,V/m \choice 3.272E-04\,V/m \choice 3.599E-04\,V/m \CorrectChoice 3.959E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 48\,m long and carries a current of 63\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \CorrectChoice 3.198E-04\,V/m \choice 3.517E-04\,V/m \choice 3.869E-04\,V/m \choice 4.256E-04\,V/m \choice 4.682E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 84\,m long and carries a current of 48\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 1.664E-04\,V/m \choice 1.830E-04\,V/m \choice 2.013E-04\,V/m \choice 2.215E-04\,V/m \CorrectChoice 2.436E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 56\,m long and carries a current of 81\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \CorrectChoice 4.111E-04\,V/m \choice 4.522E-04\,V/m \choice 4.975E-04\,V/m \choice 5.472E-04\,V/m \choice 6.019E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 15\,m long and carries a current of 85\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \choice 2.947E-04\,V/m \choice 3.241E-04\,V/m \choice 3.565E-04\,V/m \choice 3.922E-04\,V/m \CorrectChoice 4.314E-04\,V/m \end{choices} %%% end choices \question Calculate the electric field in a 12-gauge copper wire that is 41\,m long and carries a current of 71\,mA. The resistivity of copper is 1.680E-08\,\textOmega\ \(\cdot\) m and 12-gauge wire as a cross-sectional area of 3.31\,mm\textsuperscript{2}. \begin{choices} %%%%%%% begin choices \CorrectChoice 3.604E-04\,V/m \choice 3.964E-04\,V/m \choice 4.360E-04\,V/m \choice 4.796E-04\,V/m \choice 5.276E-04\,V/m \end{choices} %%% end choices %\pagebreak %\end{choices}%?????????????? \end{questions}%%%%%%%% end questions \subsection{}%%%% subsection 8 \begin{questions} %%%%%%% begin questions \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 2.14\,\textOmega\ at a temperature of 77\(^\circ\)C and that the temperature coefficient of expansion is 4.750E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 542\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 6.540E+00\,\textOmega\ \CorrectChoice 6.867E+00\,\textOmega\ \choice 7.210E+00\,\textOmega\ \choice 7.571E+00\,\textOmega\ \choice 7.949E+00\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 6.74\,\textOmega\ at a temperature of 89\(^\circ\)C and that the temperature coefficient of expansion is 4.990E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 366\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 1.529E+01\,\textOmega\ \CorrectChoice 1.606E+01\,\textOmega\ \choice 1.686E+01\,\textOmega\ \choice 1.770E+01\,\textOmega\ \choice 1.859E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 3.58\,\textOmega\ at a temperature of 24\(^\circ\)C and that the temperature coefficient of expansion is 5.520E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 349\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 9.526E+00\,\textOmega\ \CorrectChoice 1.000E+01\,\textOmega\ \choice 1.050E+01\,\textOmega\ \choice 1.103E+01\,\textOmega\ \choice 1.158E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 5.89\,\textOmega\ at a temperature of 43\(^\circ\)C and that the temperature coefficient of expansion is 4.400E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 398\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 1.369E+01\,\textOmega\ \choice 1.437E+01\,\textOmega\ \CorrectChoice 1.509E+01\,\textOmega\ \choice 1.584E+01\,\textOmega\ \choice 1.664E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 5.73\,\textOmega\ at a temperature of 99\(^\circ\)C and that the temperature coefficient of expansion is 5.260E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 420\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 1.267E+01\,\textOmega\ \choice 1.331E+01\,\textOmega\ \choice 1.397E+01\,\textOmega\ \choice 1.467E+01\,\textOmega\ \CorrectChoice 1.540E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 4.08\,\textOmega\ at a temperature of 26\(^\circ\)C and that the temperature coefficient of expansion is 4.800E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 388\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 1.064E+01\,\textOmega\ \CorrectChoice 1.117E+01\,\textOmega\ \choice 1.173E+01\,\textOmega\ \choice 1.231E+01\,\textOmega\ \choice 1.293E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 2.94\,\textOmega\ at a temperature of 30\(^\circ\)C and that the temperature coefficient of expansion is 5.900E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 445\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \CorrectChoice 1.014E+01\,\textOmega\ \choice 1.065E+01\,\textOmega\ \choice 1.118E+01\,\textOmega\ \choice 1.174E+01\,\textOmega\ \choice 1.232E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 2.89\,\textOmega\ at a temperature of 89\(^\circ\)C and that the temperature coefficient of expansion is 5.340E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 566\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 9.763E+00\,\textOmega\ \CorrectChoice 1.025E+01\,\textOmega\ \choice 1.076E+01\,\textOmega\ \choice 1.130E+01\,\textOmega\ \choice 1.187E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 5.88\,\textOmega\ at a temperature of 87\(^\circ\)C and that the temperature coefficient of expansion is 5.290E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 547\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 1.831E+01\,\textOmega\ \choice 1.923E+01\,\textOmega\ \CorrectChoice 2.019E+01\,\textOmega\ \choice 2.120E+01\,\textOmega\ \choice 2.226E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 1.56\,\textOmega\ at a temperature of 97\(^\circ\)C and that the temperature coefficient of expansion is 5.020E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 340\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \CorrectChoice 3.463E+00\,\textOmega\ \choice 3.636E+00\,\textOmega\ \choice 3.818E+00\,\textOmega\ \choice 4.009E+00\,\textOmega\ \choice 4.209E+00\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 2.61\,\textOmega\ at a temperature of 92\(^\circ\)C and that the temperature coefficient of expansion is 4.260E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 422\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \CorrectChoice 6.279E+00\,\textOmega\ \choice 6.593E+00\,\textOmega\ \choice 6.923E+00\,\textOmega\ \choice 7.269E+00\,\textOmega\ \choice 7.632E+00\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 4.48\,\textOmega\ at a temperature of 56\(^\circ\)C and that the temperature coefficient of expansion is 4.550E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 449\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 1.028E+01\,\textOmega\ \choice 1.079E+01\,\textOmega\ \choice 1.133E+01\,\textOmega\ \choice 1.190E+01\,\textOmega\ \CorrectChoice 1.249E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 1.98\,\textOmega\ at a temperature of 92\(^\circ\)C and that the temperature coefficient of expansion is 5.080E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 455\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 5.363E+00\,\textOmega\ \CorrectChoice 5.631E+00\,\textOmega\ \choice 5.913E+00\,\textOmega\ \choice 6.208E+00\,\textOmega\ \choice 6.519E+00\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 6.06\,\textOmega\ at a temperature of 80\(^\circ\)C and that the temperature coefficient of expansion is 4.290E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 330\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 1.196E+01\,\textOmega\ \CorrectChoice 1.256E+01\,\textOmega\ \choice 1.319E+01\,\textOmega\ \choice 1.385E+01\,\textOmega\ \choice 1.454E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 1.95\,\textOmega\ at a temperature of 96\(^\circ\)C and that the temperature coefficient of expansion is 4.400E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 469\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 4.449E+00\,\textOmega\ \choice 4.672E+00\,\textOmega\ \choice 4.905E+00\,\textOmega\ \CorrectChoice 5.150E+00\,\textOmega\ \choice 5.408E+00\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 3.64\,\textOmega\ at a temperature of 82\(^\circ\)C and that the temperature coefficient of expansion is 4.530E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 390\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 7.532E+00\,\textOmega\ \choice 7.908E+00\,\textOmega\ \choice 8.303E+00\,\textOmega\ \CorrectChoice 8.719E+00\,\textOmega\ \choice 9.155E+00\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 5.94\,\textOmega\ at a temperature of 70\(^\circ\)C and that the temperature coefficient of expansion is 5.120E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 386\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 1.279E+01\,\textOmega\ \choice 1.343E+01\,\textOmega\ \choice 1.410E+01\,\textOmega\ \choice 1.481E+01\,\textOmega\ \CorrectChoice 1.555E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 3.75\,\textOmega\ at a temperature of 24\(^\circ\)C and that the temperature coefficient of expansion is 4.300E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 423\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \CorrectChoice 1.018E+01\,\textOmega\ \choice 1.069E+01\,\textOmega\ \choice 1.123E+01\,\textOmega\ \choice 1.179E+01\,\textOmega\ \choice 1.238E+01\,\textOmega\ \end{choices} %%% end choices \question Imagine a substance could be made into a very hot filament. Suppose the resitance is 1.52\,\textOmega\ at a temperature of 45\(^\circ\)C and that the temperature coefficient of expansion is 4.330E-03\,(\(^\circ\)C)\textsuperscript{-1}). What is the resistance at a temperature of 479\,\(^\circ\)C? \begin{choices} %%%%%%% begin choices \choice 3.970E+00\,\textOmega\ \choice 4.168E+00\,\textOmega\ \CorrectChoice 4.376E+00\,\textOmega\ \choice 4.595E+00\,\textOmega\ \choice 4.825E+00\,\textOmega\ \end{choices} %%% end choices %\pagebreak %\end{choices}%?????????????? \end{questions}%%%%%%%% end questions \subsection{}%%%% subsection 9 \begin{questions} %%%%%%% begin questions \question A DC winch moter draws 31\,amps at 191\,volts as it lifts a 5.080E+03\,N weight at a constant speed of 0.99\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 6.972E-01\,\textOmega\ \choice 7.669E-01\,\textOmega\ \choice 8.436E-01\,\textOmega\ \CorrectChoice 9.280E-01\,\textOmega\ \choice 1.021E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 23\,amps at 196\,volts as it lifts a 4.870E+03\,N weight at a constant speed of 0.731\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 1.346E+00\,\textOmega\ \choice 1.481E+00\,\textOmega\ \choice 1.629E+00\,\textOmega\ \CorrectChoice 1.792E+00\,\textOmega\ \choice 1.971E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 26\,amps at 177\,volts as it lifts a 4.820E+03\,N weight at a constant speed of 0.696\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 1.677E+00\,\textOmega\ \CorrectChoice 1.845E+00\,\textOmega\ \choice 2.030E+00\,\textOmega\ \choice 2.233E+00\,\textOmega\ \choice 2.456E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 20\,amps at 157\,volts as it lifts a 5.270E+03\,N weight at a constant speed of 0.403\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \CorrectChoice 2.540E+00\,\textOmega\ \choice 2.795E+00\,\textOmega\ \choice 3.074E+00\,\textOmega\ \choice 3.381E+00\,\textOmega\ \choice 3.720E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 29\,amps at 153\,volts as it lifts a 4.780E+03\,N weight at a constant speed of 0.691\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 1.226E+00\,\textOmega\ \CorrectChoice 1.348E+00\,\textOmega\ \choice 1.483E+00\,\textOmega\ \choice 1.632E+00\,\textOmega\ \choice 1.795E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 26\,amps at 153\,volts as it lifts a 4.100E+03\,N weight at a constant speed of 0.609\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \CorrectChoice 2.191E+00\,\textOmega\ \choice 2.410E+00\,\textOmega\ \choice 2.651E+00\,\textOmega\ \choice 2.916E+00\,\textOmega\ \choice 3.208E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 20\,amps at 169\,volts as it lifts a 5.120E+03\,N weight at a constant speed of 0.543\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \CorrectChoice 1.500E+00\,\textOmega\ \choice 1.650E+00\,\textOmega\ \choice 1.815E+00\,\textOmega\ \choice 1.996E+00\,\textOmega\ \choice 2.196E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 25\,amps at 128\,volts as it lifts a 5.710E+03\,N weight at a constant speed of 0.449\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 8.413E-01\,\textOmega\ \choice 9.254E-01\,\textOmega\ \CorrectChoice 1.018E+00\,\textOmega\ \choice 1.120E+00\,\textOmega\ \choice 1.232E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 19\,amps at 175\,volts as it lifts a 4.230E+03\,N weight at a constant speed of 0.483\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \CorrectChoice 3.551E+00\,\textOmega\ \choice 3.906E+00\,\textOmega\ \choice 4.297E+00\,\textOmega\ \choice 4.726E+00\,\textOmega\ \choice 5.199E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 24\,amps at 159\,volts as it lifts a 4.120E+03\,N weight at a constant speed of 0.657\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 1.447E+00\,\textOmega\ \choice 1.591E+00\,\textOmega\ \choice 1.751E+00\,\textOmega\ \CorrectChoice 1.926E+00\,\textOmega\ \choice 2.118E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 27\,amps at 190\,volts as it lifts a 4.910E+03\,N weight at a constant speed of 0.769\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 1.396E+00\,\textOmega\ \choice 1.535E+00\,\textOmega\ \choice 1.689E+00\,\textOmega\ \CorrectChoice 1.858E+00\,\textOmega\ \choice 2.043E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 20\,amps at 175\,volts as it lifts a 5.180E+03\,N weight at a constant speed of 0.541\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \CorrectChoice 1.744E+00\,\textOmega\ \choice 1.918E+00\,\textOmega\ \choice 2.110E+00\,\textOmega\ \choice 2.321E+00\,\textOmega\ \choice 2.553E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 23\,amps at 170\,volts as it lifts a 5.200E+03\,N weight at a constant speed of 0.662\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 7.305E-01\,\textOmega\ \choice 8.036E-01\,\textOmega\ \CorrectChoice 8.839E-01\,\textOmega\ \choice 9.723E-01\,\textOmega\ \choice 1.070E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 27\,amps at 143\,volts as it lifts a 5.060E+03\,N weight at a constant speed of 0.623\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 8.033E-01\,\textOmega\ \choice 8.837E-01\,\textOmega\ \CorrectChoice 9.720E-01\,\textOmega\ \choice 1.069E+00\,\textOmega\ \choice 1.176E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 17\,amps at 187\,volts as it lifts a 5.600E+03\,N weight at a constant speed of 0.381\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 2.471E+00\,\textOmega\ \choice 2.718E+00\,\textOmega\ \choice 2.990E+00\,\textOmega\ \choice 3.288E+00\,\textOmega\ \CorrectChoice 3.617E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 12\,amps at 129\,volts as it lifts a 4.210E+03\,N weight at a constant speed of 0.318\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 9.924E-01\,\textOmega\ \choice 1.092E+00\,\textOmega\ \choice 1.201E+00\,\textOmega\ \choice 1.321E+00\,\textOmega\ \CorrectChoice 1.453E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 25\,amps at 119\,volts as it lifts a 4.730E+03\,N weight at a constant speed of 0.47\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 1.094E+00\,\textOmega\ \CorrectChoice 1.203E+00\,\textOmega\ \choice 1.323E+00\,\textOmega\ \choice 1.456E+00\,\textOmega\ \choice 1.601E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 18\,amps at 126\,volts as it lifts a 5.830E+03\,N weight at a constant speed of 0.26\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \choice 1.919E+00\,\textOmega\ \choice 2.111E+00\,\textOmega\ \CorrectChoice 2.322E+00\,\textOmega\ \choice 2.554E+00\,\textOmega\ \choice 2.809E+00\,\textOmega\ \end{choices} %%% end choices \question A DC winch moter draws 13\,amps at 159\,volts as it lifts a 4.270E+03\,N weight at a constant speed of 0.357\,m/s. Assuming that all the electrical power is either converted into gravitational potential energy or ohmically heats the motor's coils, calculate the coil's resistance. \begin{choices} %%%%%%% begin choices \CorrectChoice 3.211E+00\,\textOmega\ \choice 3.532E+00\,\textOmega\ \choice 3.885E+00\,\textOmega\ \choice 4.273E+00\,\textOmega\ \choice 4.701E+00\,\textOmega\ \end{choices} %%% end choices %\pagebreak %\end{choices}%?????????????? \end{questions}%%%%%%%% end questions \subsection{}%%%% subsection 10 \begin{questions} %%%%%%% begin questions \question What is consumer cost to operate one 77-W incandescent bulb for 12\,hours per day for 1 year (365 days) if the cost of electricity is \$0.134 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$3.087E+01 \choice \$3.395E+01 \choice \$3.735E+01 \choice \$4.108E+01 \CorrectChoice \$4.519E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 102-W incandescent bulb for 6\,hours per day for 1 year (365 days) if the cost of electricity is \$0.127 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$2.131E+01 \choice \$2.345E+01 \choice \$2.579E+01 \CorrectChoice \$2.837E+01 \choice \$3.121E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 65-W incandescent bulb for 12\,hours per day for 1 year (365 days) if the cost of electricity is \$0.134 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$2.866E+01 \choice \$3.153E+01 \choice \$3.468E+01 \CorrectChoice \$3.815E+01 \choice \$4.196E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 89-W incandescent bulb for 10\,hours per day for 1 year (365 days) if the cost of electricity is \$0.141 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$3.785E+01 \choice \$4.164E+01 \CorrectChoice \$4.580E+01 \choice \$5.038E+01 \choice \$5.542E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 87-W incandescent bulb for 11\,hours per day for 1 year (365 days) if the cost of electricity is \$0.117 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$2.791E+01 \choice \$3.071E+01 \choice \$3.378E+01 \choice \$3.715E+01 \CorrectChoice \$4.087E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 73-W incandescent bulb for 11\,hours per day for 1 year (365 days) if the cost of electricity is \$0.113 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \CorrectChoice \$3.312E+01 \choice \$3.643E+01 \choice \$4.007E+01 \choice \$4.408E+01 \choice \$4.849E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 57-W incandescent bulb for 11\,hours per day for 1 year (365 days) if the cost of electricity is \$0.146 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$2.282E+01 \choice \$2.510E+01 \choice \$2.761E+01 \choice \$3.038E+01 \CorrectChoice \$3.341E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 74-W incandescent bulb for 9\,hours per day for 1 year (365 days) if the cost of electricity is \$0.119 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$1.976E+01 \choice \$2.173E+01 \choice \$2.391E+01 \choice \$2.630E+01 \CorrectChoice \$2.893E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 91-W incandescent bulb for 10\,hours per day for 1 year (365 days) if the cost of electricity is \$0.131 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$2.972E+01 \choice \$3.269E+01 \choice \$3.596E+01 \choice \$3.956E+01 \CorrectChoice \$4.351E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 56-W incandescent bulb for 6\,hours per day for 1 year (365 days) if the cost of electricity is \$0.13 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$1.198E+01 \choice \$1.318E+01 \choice \$1.449E+01 \CorrectChoice \$1.594E+01 \choice \$1.754E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 59-W incandescent bulb for 10\,hours per day for 1 year (365 days) if the cost of electricity is \$0.132 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$2.584E+01 \CorrectChoice \$2.843E+01 \choice \$3.127E+01 \choice \$3.440E+01 \choice \$3.784E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 79-W incandescent bulb for 9\,hours per day for 1 year (365 days) if the cost of electricity is \$0.142 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$2.517E+01 \choice \$2.769E+01 \choice \$3.046E+01 \choice \$3.350E+01 \CorrectChoice \$3.685E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 115-W incandescent bulb for 12\,hours per day for 1 year (365 days) if the cost of electricity is \$0.128 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$5.328E+01 \choice \$5.861E+01 \CorrectChoice \$6.447E+01 \choice \$7.092E+01 \choice \$7.801E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 102-W incandescent bulb for 5\,hours per day for 1 year (365 days) if the cost of electricity is \$0.149 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$2.292E+01 \choice \$2.521E+01 \CorrectChoice \$2.774E+01 \choice \$3.051E+01 \choice \$3.356E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 77-W incandescent bulb for 12\,hours per day for 1 year (365 days) if the cost of electricity is \$0.124 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$3.142E+01 \choice \$3.456E+01 \choice \$3.802E+01 \CorrectChoice \$4.182E+01 \choice \$4.600E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 76-W incandescent bulb for 9\,hours per day for 1 year (365 days) if the cost of electricity is \$0.144 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \CorrectChoice \$3.595E+01 \choice \$3.955E+01 \choice \$4.350E+01 \choice \$4.785E+01 \choice \$5.264E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 104-W incandescent bulb for 6\,hours per day for 1 year (365 days) if the cost of electricity is \$0.136 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$2.116E+01 \choice \$2.327E+01 \choice \$2.560E+01 \choice \$2.816E+01 \CorrectChoice \$3.098E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 69-W incandescent bulb for 7\,hours per day for 1 year (365 days) if the cost of electricity is \$0.117 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \CorrectChoice \$2.063E+01 \choice \$2.269E+01 \choice \$2.496E+01 \choice \$2.745E+01 \choice \$3.020E+01 \end{choices} %%% end choices \question What is consumer cost to operate one 105-W incandescent bulb for 11\,hours per day for 1 year (365 days) if the cost of electricity is \$0.131 per kilowatt-hour? \begin{choices} %%%%%%% begin choices \choice \$5.021E+01 \CorrectChoice \$5.523E+01 \choice \$6.075E+01 \choice \$6.682E+01 \choice \$7.351E+01 \end{choices} %%% end choices \end{questions} \pagebreak \section{Attribution} \theendnotes \end{document}