QB/d cp2.15

From Wikiversity
< QB
Jump to navigation Jump to search


Wikinews-logo-prototype by Diego Grez.svg
  • Quizbank now resides on MyOpenMath at https://www.myopenmath.com (although I hope Wikiversity can play an important role in helping students and teachers use these questions!)
  • At the moment, most of the physics questions have already been transferred. To see them, join myopenmath.com as a student, and "enroll" in one or both of the following courses:
    • Quizbank physics 1 (id 60675)
    • Quizbank physics 2 (id 61712)
    • Quizbank astronomy (id 63705)

The enrollment key for each course is 123. They are all is set to practice mode, giving students unlimited attempts at each question. Instructors can also print out copies of the quiz for classroom use. If you have any problems leave a message at user talk:Guy vandegrift.



Equations     -

See special:permalink/1894891 for a wikitext version of this quiz.

LaTexMarkup begin[edit]

%[[File:Quizbankqb_{{SUBPAGENAME}}.pdf|thumb|See[[:File:Quizbankqb_{{SUBPAGENAME}}.pdf]]]]
%CurrentID: {{REVISIONID}}
%PDF: [[:File:Quizbankqb_{{SUBPAGENAME}}.pdf]]%Required images: [[file:Wikiversity-logo-en.svg|45px]][[File:DC circuit 3 resistors 1 voltage source.svg|45px]][[File:KirchhoffLaws simple.svg|45px]][[File:Kirchhoff loop w external current.svg|45px]][[File:RC_switch.svg|45px]]

%This code creates both the question and answer key using \newcommand\mytest
%%%    EDIT QUIZ INFO  HERE   %%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\quizname}{QB/d_cp2.15}

\newcommand{\quiztype}{numerical}%[[Category:QB/numerical]]
%%%%% PREAMBLE%%%%%%%%%%%%
\newif\ifkey %estabkishes Boolean ifkey to turn on and off endnotes

\documentclass[11pt]{exam}
\RequirePackage{amssymb, amsfonts, amsmath, latexsym, verbatim,
xspace, setspace,datetime}
\RequirePackage{tikz, pgflibraryplotmarks, hyperref}
\usepackage[left=.5in, right=.5in, bottom=.5in, top=.75in]{geometry}
\usepackage{endnotes, multicol,textgreek} %
\usepackage{graphicx} % 
\singlespacing %OR \onehalfspacing OR \doublespacing
\parindent 0ex % Turns off paragraph indentation
\hypersetup{ colorlinks=true, urlcolor=blue}
% BEGIN DOCUMENT 
\begin{document}
\title{d\_cp2.15}
\author{The LaTex code that creates this quiz is released to the Public Domain\\
Attribution for each question is documented in the Appendix}
\maketitle
\begin{center}                                                                                
 \includegraphics[width=0.15\textwidth]{666px-Wikiversity-logo-en.png}
\\Latex markup at\\
\footnotesize{ \url{https://en.wikiversity.org/wiki/special:permalink/1894891}}
\end{center}
\begin{frame}{}
\begin{multicols}{3}
\tableofcontents
\end{multicols}
\end{frame}
\pagebreak\section{Quiz}
\keytrue
\printanswers
\begin{questions}
\question An ac generator produces an emf of amplitude 10\,V at a frequency of 60\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  15\,mF inductor?\ifkey\endnote{Example 15.1 from OpenStax University Physics2: http://cnx.org/content/col12074/1.3\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1894891}}}\fi
 \begin{choices}
  \choice 1.208E+00\,A
  \choice 1.329E+00\,A
  \choice 1.461E+00\,A
  \choice 1.608E+00\,A
  \CorrectChoice 1.768E+00\,A
\end{choices}

\question An ac generator produces an emf of amplitude 10\,V at a frequency of 60\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  10\,mF capacitor?\ifkey\endnote{Example 15.1 from OpenStax University Physics2: http://cnx.org/content/col12074/1.3\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1894891}}}\fi
 \begin{choices}
  \CorrectChoice 3.770E-02\,A
  \choice 4.147E-02\,A
  \choice 4.562E-02\,A
  \choice 5.018E-02\,A
  \choice 5.520E-02\,A
\end{choices}

\question The output of an ac generator connected to an RLC series combination has a frequency of 200\,Hz and an amplitude of 0.1\,V;. If R =4\,\textOmega\ , L= 3.00E-03H\,, and C=8.00E-04\,F, what is the impedance?\ifkey\endnote{Example 15.1 from OpenStax University Physics2: http://cnx.org/content/col12074/1.3\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1894891}}}\fi
 \begin{choices}
  \choice 4.024E+00\,\textOmega\ 
  \choice 4.426E+00\,\textOmega\ 
  \CorrectChoice 4.868E+00\,\textOmega\ 
  \choice 5.355E+00\,\textOmega\ 
  \choice 5.891E+00\,\textOmega\ 
\end{choices}

\question The output of an ac generator connected to an RLC series combination has a frequency of 200\,Hz and an amplitude of 0.1\,V;. If R =4\,\textOmega\ , L= 3.00E-03H\,, and C=8.00E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?\ifkey\endnote{Example 15.1 from OpenStax University Physics2: http://cnx.org/content/col12074/1.3\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1894891}}}\fi
 \begin{choices}
  \choice 5.514E-01\, rad 
  \CorrectChoice 6.066E-01\, rad 
  \choice 6.672E-01\, rad 
  \choice 7.339E-01\, rad 
  \choice 8.073E-01\, rad 
\end{choices}

\question The output of an ac generator connected to an RLC series combination has a frequency of 1.00E+04\,Hz and an amplitude of 4\,V. If R =5\,\textOmega\ , L= 2.00E-03H\,, and C=4.00E-06\,F, what is the rms power transferred to the resistor?\ifkey\endnote{Example 15.1 from OpenStax University Physics2: http://cnx.org/content/col12074/1.3\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1894891}}}\fi
 \begin{choices}
  \choice 7.273E-01\,Watts
  \CorrectChoice 8.000E-01\,Watts
  \choice 8.800E-01\,Watts
  \choice 9.680E-01\,Watts
  \choice 1.065E+00\,Watts
\end{choices}

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.1\,V. The resistance, inductance, and capacitance are R =4\,\textOmega\ , L= 3.00E-03H\,, and C=8.00E-04\,F, respectively.  What is the amplitude of the current?\ifkey\endnote{Example 15.4 from OpenStax University Physics2: http://cnx.org/content/col12074/1.3\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1894891}}}\fi
 \begin{choices}
  \choice 2.066E-02\,A
  \choice 2.273E-02\,A
  \CorrectChoice 2.500E-02\,A
  \choice 2.750E-02\,A
  \choice 3.025E-02\,A
\end{choices}

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=4\,V. The resistance, inductance, and capacitance are R =0.2\,\textOmega\ , L= 4.00E-03H\,, and C=2.00E-06\,F, respectively.\ifkey\endnote{Example 15.5 from OpenStax University Physics2: http://cnx.org/content/col12074/1.3\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1894891}}}\fi
 \begin{choices}
  \choice Q = 1.278E+02
  \choice Q = 1.470E+02
  \choice Q = 1.691E+02
  \choice Q = 1.944E+02
  \CorrectChoice Q = 2.236E+02
\end{choices}

\question A step-down transformer steps 12\,kV down to 240\,V.  The high-voltage input is provided by a 200\,\textOmega\  power line that carries 2\,A of currentWhat is the output current (at the 240\,V side ?)\ifkey\endnote{Lifted from Example 7.15 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.8:z70YwVma@4/156-Transformers\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1894891}}}\fi
 \begin{choices}
  \CorrectChoice 1.000E+02\,A
  \choice 1.100E+02\,A
  \choice 1.210E+02\,A
  \choice 1.331E+02\,A
  \choice 1.464E+02\,A
\end{choices}

\end{questions}
\newpage
\section{Renditions}  %%% Renditions %%%%

\subsection{}%%%% subsection 1

\begin{questions} %%%%%%% begin questions

\question An ac generator produces an emf of amplitude 78\,V at a frequency of 45\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  60\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  3.140E+00\,A
    \choice  3.454E+00\,A
    \choice  3.800E+00\,A
    \choice  4.180E+00\,A
    \CorrectChoice 4.598E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 5\,V at a frequency of 52\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  49\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  2.839E-01\,A
    \CorrectChoice 3.123E-01\,A
    \choice  3.435E-01\,A
    \choice  3.779E-01\,A
    \choice  4.157E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 97\,V at a frequency of 64\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  55\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 4.386E+00\,A
    \choice  4.824E+00\,A
    \choice  5.307E+00\,A
    \choice  5.838E+00\,A
    \choice  6.421E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 40\,V at a frequency of 130\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  52\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  7.783E-01\,A
    \choice  8.561E-01\,A
    \CorrectChoice 9.417E-01\,A
    \choice  1.036E+00\,A
    \choice  1.140E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 60\,V at a frequency of 130\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  85\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  7.856E-01\,A
    \CorrectChoice 8.642E-01\,A
    \choice  9.506E-01\,A
    \choice  1.046E+00\,A
    \choice  1.150E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 70\,V at a frequency of 63\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  34\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  3.908E+00\,A
    \choice  4.298E+00\,A
    \choice  4.728E+00\,A
    \CorrectChoice 5.201E+00\,A
    \choice  5.721E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 3\,V at a frequency of 130\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  75\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  3.679E-02\,A
    \choice  4.047E-02\,A
    \choice  4.452E-02\,A
    \CorrectChoice 4.897E-02\,A
    \choice  5.387E-02\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 73\,V at a frequency of 110\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  70\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  1.134E+00\,A
    \choice  1.247E+00\,A
    \choice  1.372E+00\,A
    \CorrectChoice 1.509E+00\,A
    \choice  1.660E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 90\,V at a frequency of 130\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  20\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  5.008E+00\,A
    \CorrectChoice 5.509E+00\,A
    \choice  6.060E+00\,A
    \choice  6.666E+00\,A
    \choice  7.333E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 69\,V at a frequency of 180\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  57\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 1.070E+00\,A
    \choice  1.177E+00\,A
    \choice  1.295E+00\,A
    \choice  1.425E+00\,A
    \choice  1.567E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 7\,V at a frequency of 190\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  44\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  9.102E-02\,A
    \choice  1.001E-01\,A
    \choice  1.101E-01\,A
    \choice  1.211E-01\,A
    \CorrectChoice 1.333E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 37\,V at a frequency of 100\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  86\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  4.677E-01\,A
    \choice  5.145E-01\,A
    \choice  5.659E-01\,A
    \choice  6.225E-01\,A
    \CorrectChoice 6.847E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 24\,V at a frequency of 120\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  96\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  3.014E-01\,A
    \CorrectChoice 3.316E-01\,A
    \choice  3.647E-01\,A
    \choice  4.012E-01\,A
    \choice  4.413E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 58\,V at a frequency of 99\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  35\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  2.422E+00\,A
    \CorrectChoice 2.664E+00\,A
    \choice  2.930E+00\,A
    \choice  3.224E+00\,A
    \choice  3.546E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 8\,V at a frequency of 80\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  14\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  8.541E-01\,A
    \choice  9.395E-01\,A
    \choice  1.033E+00\,A
    \CorrectChoice 1.137E+00\,A
    \choice  1.251E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 46\,V at a frequency of 160\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  63\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  4.961E-01\,A
    \choice  5.457E-01\,A
    \choice  6.002E-01\,A
    \choice  6.603E-01\,A
    \CorrectChoice 7.263E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 76\,V at a frequency of 180\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  14\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  3.606E+00\,A
    \choice  3.967E+00\,A
    \choice  4.364E+00\,A
    \CorrectChoice 4.800E+00\,A
    \choice  5.280E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 75\,V at a frequency of 200\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  22\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  2.466E+00\,A
    \CorrectChoice 2.713E+00\,A
    \choice  2.984E+00\,A
    \choice  3.283E+00\,A
    \choice  3.611E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 66\,V at a frequency of 180\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  97\,mF inductor?
\begin{choices} %%%%%%% begin choices
    \choice  4.972E-01\,A
    \choice  5.469E-01\,A
    \CorrectChoice 6.016E-01\,A
    \choice  6.618E-01\,A
    \choice  7.280E-01\,A
\end{choices} %%% end choices
%\pagebreak
%\end{choices}%??????????????
\end{questions}%%%%%%%% end questions

\subsection{}%%%% subsection 2

\begin{questions} %%%%%%% begin questions

\question An ac generator produces an emf of amplitude 64\,V at a frequency of 95\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  99\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  3.126E+00\,A
    \choice  3.438E+00\,A
    \CorrectChoice 3.782E+00\,A
    \choice  4.160E+00\,A
    \choice  4.576E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 58\,V at a frequency of 200\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  66\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  3.976E+00\,A
    \choice  4.373E+00\,A
    \CorrectChoice 4.810E+00\,A
    \choice  5.291E+00\,A
    \choice  5.821E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 90\,V at a frequency of 64\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  16\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  4.351E-01\,A
    \choice  4.786E-01\,A
    \choice  5.264E-01\,A
    \CorrectChoice 5.791E-01\,A
    \choice  6.370E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 87\,V at a frequency of 44\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  9\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  1.626E-01\,A
    \choice  1.789E-01\,A
    \choice  1.968E-01\,A
    \CorrectChoice 2.165E-01\,A
    \choice  2.381E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 71\,V at a frequency of 68\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  35\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  7.252E-01\,A
    \choice  7.977E-01\,A
    \choice  8.775E-01\,A
    \choice  9.652E-01\,A
    \CorrectChoice 1.062E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 85\,V at a frequency of 160\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  59\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 5.042E+00\,A
    \choice  5.546E+00\,A
    \choice  6.100E+00\,A
    \choice  6.710E+00\,A
    \choice  7.381E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 32\,V at a frequency of 120\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  14\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 3.378E-01\,A
    \choice  3.716E-01\,A
    \choice  4.087E-01\,A
    \choice  4.496E-01\,A
    \choice  4.945E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 50\,V at a frequency of 47\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  88\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  1.074E+00\,A
    \choice  1.181E+00\,A
    \CorrectChoice 1.299E+00\,A
    \choice  1.429E+00\,A
    \choice  1.572E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 53\,V at a frequency of 190\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  85\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  4.445E+00\,A
    \choice  4.889E+00\,A
    \CorrectChoice 5.378E+00\,A
    \choice  5.916E+00\,A
    \choice  6.507E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 49\,V at a frequency of 110\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  32\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  8.956E-01\,A
    \choice  9.852E-01\,A
    \CorrectChoice 1.084E+00\,A
    \choice  1.192E+00\,A
    \choice  1.311E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 98\,V at a frequency of 110\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  2\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  1.232E-01\,A
    \CorrectChoice 1.355E-01\,A
    \choice  1.490E-01\,A
    \choice  1.639E-01\,A
    \choice  1.803E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 51\,V at a frequency of 57\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  99\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  1.644E+00\,A
    \CorrectChoice 1.808E+00\,A
    \choice  1.989E+00\,A
    \choice  2.188E+00\,A
    \choice  2.407E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 8\,V at a frequency of 85\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  16\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  4.669E-02\,A
    \choice  5.136E-02\,A
    \choice  5.650E-02\,A
    \choice  6.215E-02\,A
    \CorrectChoice 6.836E-02\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 54\,V at a frequency of 120\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  7\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 2.850E-01\,A
    \choice  3.135E-01\,A
    \choice  3.449E-01\,A
    \choice  3.793E-01\,A
    \choice  4.173E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 64\,V at a frequency of 100\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  32\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  1.170E+00\,A
    \CorrectChoice 1.287E+00\,A
    \choice  1.415E+00\,A
    \choice  1.557E+00\,A
    \choice  1.713E+00\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 17\,V at a frequency of 120\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  6\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  5.253E-02\,A
    \choice  5.778E-02\,A
    \choice  6.356E-02\,A
    \choice  6.991E-02\,A
    \CorrectChoice 7.691E-02\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 4\,V at a frequency of 160\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  19\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  6.946E-02\,A
    \CorrectChoice 7.640E-02\,A
    \choice  8.404E-02\,A
    \choice  9.245E-02\,A
    \choice  1.017E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 7\,V at a frequency of 95\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  50\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  1.427E-01\,A
    \choice  1.570E-01\,A
    \choice  1.727E-01\,A
    \choice  1.899E-01\,A
    \CorrectChoice 2.089E-01\,A
\end{choices} %%% end choices

\question An ac generator produces an emf of amplitude 93\,V at a frequency of 160\,Hz. What is the maximum amplitude of the  current if the generator is connected to a  70\,mF capacitor?
\begin{choices} %%%%%%% begin choices
    \choice  4.917E+00\,A
    \choice  5.409E+00\,A
    \choice  5.950E+00\,A
    \CorrectChoice 6.545E+00\,A
    \choice  7.199E+00\,A
\end{choices} %%% end choices
%\pagebreak
%\end{choices}%??????????????
\end{questions}%%%%%%%% end questions

\subsection{}%%%% subsection 3

\begin{questions} %%%%%%% begin questions

\question The output of an ac generator connected to an RLC series combination has a frequency of 510\,Hz and an amplitude of 0.69\,V;. If R =4\,\textOmega\ , L= 4.30E-03H\,, and C=9.20E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  1.054E+01\,\textOmega\ 
    \choice  1.159E+01\,\textOmega\ 
    \choice  1.275E+01\,\textOmega\ 
    \CorrectChoice 1.402E+01\,\textOmega\ 
    \choice  1.542E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 810\,Hz and an amplitude of 0.64\,V;. If R =6\,\textOmega\ , L= 8.70E-03H\,, and C=8.20E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 4.444E+01\,\textOmega\ 
    \choice  4.889E+01\,\textOmega\ 
    \choice  5.378E+01\,\textOmega\ 
    \choice  5.916E+01\,\textOmega\ 
    \choice  6.507E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 900\,Hz and an amplitude of 0.43\,V;. If R =7\,\textOmega\ , L= 5.60E-03H\,, and C=6.30E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  2.658E+01\,\textOmega\ 
    \choice  2.923E+01\,\textOmega\ 
    \CorrectChoice 3.216E+01\,\textOmega\ 
    \choice  3.537E+01\,\textOmega\ 
    \choice  3.891E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 680\,Hz and an amplitude of 0.79\,V;. If R =5\,\textOmega\ , L= 2.40E-03H\,, and C=9.10E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  8.398E+00\,\textOmega\ 
    \choice  9.238E+00\,\textOmega\ 
    \choice  1.016E+01\,\textOmega\ 
    \CorrectChoice 1.118E+01\,\textOmega\ 
    \choice  1.230E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 710\,Hz and an amplitude of 0.88\,V;. If R =2\,\textOmega\ , L= 2.60E-03H\,, and C=8.00E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  1.045E+01\,\textOmega\ 
    \CorrectChoice 1.149E+01\,\textOmega\ 
    \choice  1.264E+01\,\textOmega\ 
    \choice  1.391E+01\,\textOmega\ 
    \choice  1.530E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 890\,Hz and an amplitude of 0.12\,V;. If R =8\,\textOmega\ , L= 8.60E-03H\,, and C=9.90E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  3.318E+01\,\textOmega\ 
    \choice  3.649E+01\,\textOmega\ 
    \choice  4.014E+01\,\textOmega\ 
    \choice  4.416E+01\,\textOmega\ 
    \CorrectChoice 4.857E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 1.00E+03\,Hz and an amplitude of 0.6\,V;. If R =3\,\textOmega\ , L= 1.70E-03H\,, and C=5.40E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  8.123E+00\,\textOmega\ 
    \choice  8.935E+00\,\textOmega\ 
    \choice  9.828E+00\,\textOmega\ 
    \CorrectChoice 1.081E+01\,\textOmega\ 
    \choice  1.189E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 490\,Hz and an amplitude of 0.68\,V;. If R =9\,\textOmega\ , L= 5.80E-03H\,, and C=9.50E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 1.969E+01\,\textOmega\ 
    \choice  2.166E+01\,\textOmega\ 
    \choice  2.383E+01\,\textOmega\ 
    \choice  2.621E+01\,\textOmega\ 
    \choice  2.883E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 650\,Hz and an amplitude of 0.3\,V;. If R =3\,\textOmega\ , L= 4.90E-03H\,, and C=8.20E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  1.813E+01\,\textOmega\ 
    \CorrectChoice 1.994E+01\,\textOmega\ 
    \choice  2.193E+01\,\textOmega\ 
    \choice  2.413E+01\,\textOmega\ 
    \choice  2.654E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 370\,Hz and an amplitude of 0.14\,V;. If R =3\,\textOmega\ , L= 5.30E-03H\,, and C=5.50E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  8.958E+00\,\textOmega\ 
    \choice  9.854E+00\,\textOmega\ 
    \choice  1.084E+01\,\textOmega\ 
    \CorrectChoice 1.192E+01\,\textOmega\ 
    \choice  1.312E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 290\,Hz and an amplitude of 0.75\,V;. If R =2\,\textOmega\ , L= 8.00E-03H\,, and C=9.90E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  9.675E+00\,\textOmega\ 
    \choice  1.064E+01\,\textOmega\ 
    \choice  1.171E+01\,\textOmega\ 
    \choice  1.288E+01\,\textOmega\ 
    \CorrectChoice 1.416E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 690\,Hz and an amplitude of 0.4\,V;. If R =3\,\textOmega\ , L= 3.00E-03H\,, and C=8.30E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 1.308E+01\,\textOmega\ 
    \choice  1.438E+01\,\textOmega\ 
    \choice  1.582E+01\,\textOmega\ 
    \choice  1.741E+01\,\textOmega\ 
    \choice  1.915E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 420\,Hz and an amplitude of 0.73\,V;. If R =2\,\textOmega\ , L= 9.60E-03H\,, and C=7.80E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  2.060E+01\,\textOmega\ 
    \choice  2.266E+01\,\textOmega\ 
    \CorrectChoice 2.493E+01\,\textOmega\ 
    \choice  2.742E+01\,\textOmega\ 
    \choice  3.016E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 540\,Hz and an amplitude of 0.18\,V;. If R =3\,\textOmega\ , L= 2.50E-03H\,, and C=8.20E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  7.872E+00\,\textOmega\ 
    \CorrectChoice 8.659E+00\,\textOmega\ 
    \choice  9.525E+00\,\textOmega\ 
    \choice  1.048E+01\,\textOmega\ 
    \choice  1.153E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 840\,Hz and an amplitude of 0.55\,V;. If R =4\,\textOmega\ , L= 9.30E-03H\,, and C=9.40E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  3.685E+01\,\textOmega\ 
    \choice  4.053E+01\,\textOmega\ 
    \choice  4.459E+01\,\textOmega\ 
    \CorrectChoice 4.905E+01\,\textOmega\ 
    \choice  5.395E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 470\,Hz and an amplitude of 0.67\,V;. If R =4\,\textOmega\ , L= 2.40E-03H\,, and C=5.10E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  6.254E+00\,\textOmega\ 
    \choice  6.879E+00\,\textOmega\ 
    \CorrectChoice 7.567E+00\,\textOmega\ 
    \choice  8.324E+00\,\textOmega\ 
    \choice  9.156E+00\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 740\,Hz and an amplitude of 0.66\,V;. If R =3\,\textOmega\ , L= 2.40E-03H\,, and C=5.70E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 1.119E+01\,\textOmega\ 
    \choice  1.231E+01\,\textOmega\ 
    \choice  1.354E+01\,\textOmega\ 
    \choice  1.490E+01\,\textOmega\ 
    \choice  1.639E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 910\,Hz and an amplitude of 0.88\,V;. If R =7\,\textOmega\ , L= 6.80E-03H\,, and C=9.60E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  3.575E+01\,\textOmega\ 
    \CorrectChoice 3.933E+01\,\textOmega\ 
    \choice  4.326E+01\,\textOmega\ 
    \choice  4.758E+01\,\textOmega\ 
    \choice  5.234E+01\,\textOmega\ 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 760\,Hz and an amplitude of 0.18\,V;. If R =6\,\textOmega\ , L= 7.50E-03H\,, and C=7.50E-04\,F, what is the impedance?
\begin{choices} %%%%%%% begin choices
    \choice  2.708E+01\,\textOmega\ 
    \choice  2.978E+01\,\textOmega\ 
    \choice  3.276E+01\,\textOmega\ 
    \CorrectChoice 3.604E+01\,\textOmega\ 
    \choice  3.964E+01\,\textOmega\ 
\end{choices} %%% end choices
%\pagebreak
%\end{choices}%??????????????
\end{questions}%%%%%%%% end questions

\subsection{}%%%% subsection 4

\begin{questions} %%%%%%% begin questions

\question The output of an ac generator connected to an RLC series combination has a frequency of 480\,Hz and an amplitude of 0.17\,V;. If R =5\,\textOmega\ , L= 6.70E-03H\,, and C=6.30E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 1.322E+00\, rad 
    \choice  1.454E+00\, rad 
    \choice  1.600E+00\, rad 
    \choice  1.760E+00\, rad 
    \choice  1.936E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 300\,Hz and an amplitude of 0.76\,V;. If R =5\,\textOmega\ , L= 6.10E-03H\,, and C=5.80E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  7.714E-01\, rad 
    \choice  8.486E-01\, rad 
    \choice  9.334E-01\, rad 
    \choice  1.027E+00\, rad 
    \CorrectChoice 1.129E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 220\,Hz and an amplitude of 0.71\,V;. If R =7\,\textOmega\ , L= 8.20E-03H\,, and C=9.40E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  8.146E-01\, rad 
    \choice  8.960E-01\, rad 
    \CorrectChoice 9.856E-01\, rad 
    \choice  1.084E+00\, rad 
    \choice  1.193E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 160\,Hz and an amplitude of 0.47\,V;. If R =8\,\textOmega\ , L= 1.30E-03H\,, and C=6.40E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  2.111E-02\, rad 
    \choice  2.322E-02\, rad 
    \choice  2.554E-02\, rad 
    \choice  2.810E-02\, rad 
    \CorrectChoice 3.091E-02\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 860\,Hz and an amplitude of 0.59\,V;. If R =9\,\textOmega\ , L= 8.40E-03H\,, and C=8.80E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  1.032E+00\, rad 
    \choice  1.136E+00\, rad 
    \choice  1.249E+00\, rad 
    \CorrectChoice 1.374E+00\, rad 
    \choice  1.512E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 830\,Hz and an amplitude of 0.73\,V;. If R =8\,\textOmega\ , L= 2.80E-03H\,, and C=5.80E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  8.759E-01\, rad 
    \choice  9.635E-01\, rad 
    \CorrectChoice 1.060E+00\, rad 
    \choice  1.166E+00\, rad 
    \choice  1.282E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 970\,Hz and an amplitude of 0.11\,V;. If R =9\,\textOmega\ , L= 8.50E-03H\,, and C=7.00E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 1.398E+00\, rad 
    \choice  1.538E+00\, rad 
    \choice  1.692E+00\, rad 
    \choice  1.861E+00\, rad 
    \choice  2.047E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 760\,Hz and an amplitude of 0.43\,V;. If R =7\,\textOmega\ , L= 7.40E-03H\,, and C=6.00E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  9.380E-01\, rad 
    \choice  1.032E+00\, rad 
    \choice  1.135E+00\, rad 
    \choice  1.248E+00\, rad 
    \CorrectChoice 1.373E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 760\,Hz and an amplitude of 0.23\,V;. If R =4\,\textOmega\ , L= 7.70E-03H\,, and C=9.30E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  1.329E+00\, rad 
    \CorrectChoice 1.462E+00\, rad 
    \choice  1.608E+00\, rad 
    \choice  1.769E+00\, rad 
    \choice  1.946E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 720\,Hz and an amplitude of 0.63\,V;. If R =5\,\textOmega\ , L= 4.20E-03H\,, and C=5.80E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  1.081E+00\, rad 
    \choice  1.189E+00\, rad 
    \CorrectChoice 1.308E+00\, rad 
    \choice  1.439E+00\, rad 
    \choice  1.583E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 320\,Hz and an amplitude of 0.69\,V;. If R =6\,\textOmega\ , L= 6.80E-03H\,, and C=9.40E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 1.143E+00\, rad 
    \choice  1.257E+00\, rad 
    \choice  1.382E+00\, rad 
    \choice  1.521E+00\, rad 
    \choice  1.673E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 510\,Hz and an amplitude of 0.24\,V;. If R =7\,\textOmega\ , L= 2.90E-03H\,, and C=9.00E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  7.495E-01\, rad 
    \choice  8.244E-01\, rad 
    \CorrectChoice 9.068E-01\, rad 
    \choice  9.975E-01\, rad 
    \choice  1.097E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 750\,Hz and an amplitude of 0.88\,V;. If R =4\,\textOmega\ , L= 5.60E-03H\,, and C=9.70E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  1.290E+00\, rad 
    \CorrectChoice 1.419E+00\, rad 
    \choice  1.561E+00\, rad 
    \choice  1.717E+00\, rad 
    \choice  1.889E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 410\,Hz and an amplitude of 0.82\,V;. If R =7\,\textOmega\ , L= 9.70E-03H\,, and C=9.00E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  1.176E+00\, rad 
    \CorrectChoice 1.293E+00\, rad 
    \choice  1.422E+00\, rad 
    \choice  1.565E+00\, rad 
    \choice  1.721E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 280\,Hz and an amplitude of 0.35\,V;. If R =5\,\textOmega\ , L= 9.50E-03H\,, and C=6.90E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  8.646E-01\, rad 
    \choice  9.511E-01\, rad 
    \choice  1.046E+00\, rad 
    \choice  1.151E+00\, rad 
    \CorrectChoice 1.266E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 360\,Hz and an amplitude of 0.17\,V;. If R =9\,\textOmega\ , L= 2.60E-03H\,, and C=8.00E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  4.860E-01\, rad 
    \CorrectChoice 5.346E-01\, rad 
    \choice  5.880E-01\, rad 
    \choice  6.468E-01\, rad 
    \choice  7.115E-01\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 890\,Hz and an amplitude of 0.58\,V;. If R =9\,\textOmega\ , L= 2.90E-03H\,, and C=8.30E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  7.952E-01\, rad 
    \choice  8.747E-01\, rad 
    \choice  9.622E-01\, rad 
    \CorrectChoice 1.058E+00\, rad 
    \choice  1.164E+00\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 200\,Hz and an amplitude of 0.14\,V;. If R =3\,\textOmega\ , L= 1.70E-03H\,, and C=9.40E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \choice  3.691E-01\, rad 
    \CorrectChoice 4.060E-01\, rad 
    \choice  4.466E-01\, rad 
    \choice  4.913E-01\, rad 
    \choice  5.404E-01\, rad 
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 480\,Hz and an amplitude of 0.63\,V;. If R =7\,\textOmega\ , L= 3.80E-03H\,, and C=5.30E-04\,F, what is the magnitude (absolute value) of the phase difference between current and emf?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 9.972E-01\, rad 
    \choice  1.097E+00\, rad 
    \choice  1.207E+00\, rad 
    \choice  1.327E+00\, rad 
    \choice  1.460E+00\, rad 
\end{choices} %%% end choices
%\pagebreak
%\end{choices}%??????????????
\end{questions}%%%%%%%% end questions

\subsection{}%%%% subsection 5

\begin{questions} %%%%%%% begin questions

\question The output of an ac generator connected to an RLC series combination has a frequency of 8.20E+04\,Hz and an amplitude of 4\,V. If R =5\,\textOmega\ , L= 5.40E-03H\,, and C=9.80E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  1.865E-04\,Watts
    \CorrectChoice 2.051E-04\,Watts
    \choice  2.256E-04\,Watts
    \choice  2.482E-04\,Watts
    \choice  2.730E-04\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 4.30E+04\,Hz and an amplitude of 6\,V. If R =6\,\textOmega\ , L= 5.20E-03H\,, and C=8.60E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  1.511E-03\,Watts
    \choice  1.662E-03\,Watts
    \choice  1.828E-03\,Watts
    \choice  2.011E-03\,Watts
    \CorrectChoice 2.212E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 6.10E+04\,Hz and an amplitude of 9\,V. If R =4\,\textOmega\ , L= 3.40E-03H\,, and C=8.10E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 3.839E-03\,Watts
    \choice  4.223E-03\,Watts
    \choice  4.646E-03\,Watts
    \choice  5.110E-03\,Watts
    \choice  5.621E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 3.40E+04\,Hz and an amplitude of 8\,V. If R =4\,\textOmega\ , L= 6.60E-03H\,, and C=5.30E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  2.007E-03\,Watts
    \choice  2.208E-03\,Watts
    \choice  2.429E-03\,Watts
    \CorrectChoice 2.672E-03\,Watts
    \choice  2.939E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 2.70E+04\,Hz and an amplitude of 8\,V. If R =4\,\textOmega\ , L= 9.10E-03H\,, and C=9.60E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 2.188E-03\,Watts
    \choice  2.407E-03\,Watts
    \choice  2.647E-03\,Watts
    \choice  2.912E-03\,Watts
    \choice  3.203E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 3.50E+04\,Hz and an amplitude of 8\,V. If R =7\,\textOmega\ , L= 9.40E-03H\,, and C=8.50E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 2.111E-03\,Watts
    \choice  2.323E-03\,Watts
    \choice  2.555E-03\,Watts
    \choice  2.810E-03\,Watts
    \choice  3.091E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 5.50E+04\,Hz and an amplitude of 2\,V. If R =8\,\textOmega\ , L= 9.60E-03H\,, and C=8.30E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  4.347E-05\,Watts
    \choice  4.782E-05\,Watts
    \choice  5.260E-05\,Watts
    \CorrectChoice 5.786E-05\,Watts
    \choice  6.364E-05\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 2.30E+04\,Hz and an amplitude of 3\,V. If R =5\,\textOmega\ , L= 3.90E-03H\,, and C=9.00E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  2.339E-03\,Watts
    \choice  2.573E-03\,Watts
    \choice  2.830E-03\,Watts
    \CorrectChoice 3.113E-03\,Watts
    \choice  3.424E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 5.40E+04\,Hz and an amplitude of 6\,V. If R =2\,\textOmega\ , L= 6.80E-03H\,, and C=9.90E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  2.452E-04\,Watts
    \CorrectChoice 2.697E-04\,Watts
    \choice  2.967E-04\,Watts
    \choice  3.264E-04\,Watts
    \choice  3.590E-04\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 1.90E+04\,Hz and an amplitude of 3\,V. If R =8\,\textOmega\ , L= 9.70E-03H\,, and C=9.70E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  7.670E-04\,Watts
    \choice  8.436E-04\,Watts
    \choice  9.280E-04\,Watts
    \choice  1.021E-03\,Watts
    \CorrectChoice 1.123E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 3.60E+04\,Hz and an amplitude of 9\,V. If R =2\,\textOmega\ , L= 7.60E-03H\,, and C=7.50E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  1.011E-03\,Watts
    \CorrectChoice 1.112E-03\,Watts
    \choice  1.223E-03\,Watts
    \choice  1.345E-03\,Watts
    \choice  1.480E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 5.00E+04\,Hz and an amplitude of 5\,V. If R =6\,\textOmega\ , L= 2.50E-03H\,, and C=5.20E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 5.097E-03\,Watts
    \choice  5.607E-03\,Watts
    \choice  6.167E-03\,Watts
    \choice  6.784E-03\,Watts
    \choice  7.463E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 2.30E+04\,Hz and an amplitude of 7\,V. If R =3\,\textOmega\ , L= 4.10E-03H\,, and C=8.70E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  8.369E-03\,Watts
    \CorrectChoice 9.206E-03\,Watts
    \choice  1.013E-02\,Watts
    \choice  1.114E-02\,Watts
    \choice  1.225E-02\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 6.10E+04\,Hz and an amplitude of 8\,V. If R =5\,\textOmega\ , L= 9.10E-03H\,, and C=8.80E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  4.320E-04\,Watts
    \choice  4.752E-04\,Watts
    \CorrectChoice 5.227E-04\,Watts
    \choice  5.750E-04\,Watts
    \choice  6.325E-04\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 4.00E+04\,Hz and an amplitude of 8\,V. If R =4\,\textOmega\ , L= 7.00E-03H\,, and C=6.60E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  1.146E-03\,Watts
    \choice  1.260E-03\,Watts
    \choice  1.386E-03\,Watts
    \choice  1.525E-03\,Watts
    \CorrectChoice 1.677E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 7.60E+04\,Hz and an amplitude of 5\,V. If R =6\,\textOmega\ , L= 3.70E-03H\,, and C=5.80E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  7.239E-04\,Watts
    \choice  7.963E-04\,Watts
    \choice  8.759E-04\,Watts
    \CorrectChoice 9.635E-04\,Watts
    \choice  1.060E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 8.00E+04\,Hz and an amplitude of 2\,V. If R =7\,\textOmega\ , L= 4.60E-03H\,, and C=5.30E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 1.047E-04\,Watts
    \choice  1.151E-04\,Watts
    \choice  1.267E-04\,Watts
    \choice  1.393E-04\,Watts
    \choice  1.533E-04\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 5.70E+04\,Hz and an amplitude of 5\,V. If R =9\,\textOmega\ , L= 6.10E-03H\,, and C=6.60E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 9.443E-04\,Watts
    \choice  1.039E-03\,Watts
    \choice  1.143E-03\,Watts
    \choice  1.257E-03\,Watts
    \choice  1.383E-03\,Watts
\end{choices} %%% end choices

\question The output of an ac generator connected to an RLC series combination has a frequency of 6.00E+04\,Hz and an amplitude of 2\,V. If R =3\,\textOmega\ , L= 7.20E-03H\,, and C=6.50E-06\,F, what is the rms power transferred to the resistor?
\begin{choices} %%%%%%% begin choices
    \choice  2.222E-05\,Watts
    \choice  2.444E-05\,Watts
    \choice  2.689E-05\,Watts
    \choice  2.958E-05\,Watts
    \CorrectChoice 3.253E-05\,Watts
\end{choices} %%% end choices
%\pagebreak
%\end{choices}%??????????????
\end{questions}%%%%%%%% end questions

\subsection{}%%%% subsection 6

\begin{questions} %%%%%%% begin questions

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.38\,V. The resistance, inductance, and capacitance are R =7\,\textOmega\ , L= 4.10E-03H\,, and C=7.40E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  4.486E-02\,A
    \choice  4.935E-02\,A
    \CorrectChoice 5.429E-02\,A
    \choice  5.971E-02\,A
    \choice  6.569E-02\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.62\,V. The resistance, inductance, and capacitance are R =6\,\textOmega\ , L= 8.10E-03H\,, and C=6.40E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  7.058E-02\,A
    \choice  7.764E-02\,A
    \choice  8.540E-02\,A
    \choice  9.394E-02\,A
    \CorrectChoice 1.033E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.16\,V. The resistance, inductance, and capacitance are R =8\,\textOmega\ , L= 5.40E-03H\,, and C=5.40E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 2.000E-02\,A
    \choice  2.200E-02\,A
    \choice  2.420E-02\,A
    \choice  2.662E-02\,A
    \choice  2.928E-02\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.77\,V. The resistance, inductance, and capacitance are R =3\,\textOmega\ , L= 6.70E-03H\,, and C=7.10E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  2.333E-01\,A
    \CorrectChoice 2.567E-01\,A
    \choice  2.823E-01\,A
    \choice  3.106E-01\,A
    \choice  3.416E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.82\,V. The resistance, inductance, and capacitance are R =8\,\textOmega\ , L= 6.40E-03H\,, and C=5.70E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  7.701E-02\,A
    \choice  8.471E-02\,A
    \choice  9.318E-02\,A
    \CorrectChoice 1.025E-01\,A
    \choice  1.128E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.64\,V. The resistance, inductance, and capacitance are R =2\,\textOmega\ , L= 4.00E-03H\,, and C=8.30E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 3.200E-01\,A
    \choice  3.520E-01\,A
    \choice  3.872E-01\,A
    \choice  4.259E-01\,A
    \choice  4.685E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.8\,V. The resistance, inductance, and capacitance are R =7\,\textOmega\ , L= 4.90E-03H\,, and C=8.50E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  1.039E-01\,A
    \CorrectChoice 1.143E-01\,A
    \choice  1.257E-01\,A
    \choice  1.383E-01\,A
    \choice  1.521E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.25\,V. The resistance, inductance, and capacitance are R =3\,\textOmega\ , L= 2.20E-03H\,, and C=6.30E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  7.576E-02\,A
    \CorrectChoice 8.333E-02\,A
    \choice  9.167E-02\,A
    \choice  1.008E-01\,A
    \choice  1.109E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.25\,V. The resistance, inductance, and capacitance are R =7\,\textOmega\ , L= 5.00E-03H\,, and C=7.70E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  2.439E-02\,A
    \choice  2.683E-02\,A
    \choice  2.952E-02\,A
    \choice  3.247E-02\,A
    \CorrectChoice 3.571E-02\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.88\,V. The resistance, inductance, and capacitance are R =7\,\textOmega\ , L= 8.00E-03H\,, and C=5.50E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  1.143E-01\,A
    \CorrectChoice 1.257E-01\,A
    \choice  1.383E-01\,A
    \choice  1.521E-01\,A
    \choice  1.673E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.3\,V. The resistance, inductance, and capacitance are R =2\,\textOmega\ , L= 8.10E-03H\,, and C=9.40E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  1.364E-01\,A
    \CorrectChoice 1.500E-01\,A
    \choice  1.650E-01\,A
    \choice  1.815E-01\,A
    \choice  1.997E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.31\,V. The resistance, inductance, and capacitance are R =5\,\textOmega\ , L= 9.00E-03H\,, and C=5.10E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  4.235E-02\,A
    \choice  4.658E-02\,A
    \choice  5.124E-02\,A
    \choice  5.636E-02\,A
    \CorrectChoice 6.200E-02\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.82\,V. The resistance, inductance, and capacitance are R =3\,\textOmega\ , L= 6.20E-03H\,, and C=6.70E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  2.259E-01\,A
    \choice  2.485E-01\,A
    \CorrectChoice 2.733E-01\,A
    \choice  3.007E-01\,A
    \choice  3.307E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.75\,V. The resistance, inductance, and capacitance are R =5\,\textOmega\ , L= 9.90E-03H\,, and C=6.80E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  1.240E-01\,A
    \choice  1.364E-01\,A
    \CorrectChoice 1.500E-01\,A
    \choice  1.650E-01\,A
    \choice  1.815E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.83\,V. The resistance, inductance, and capacitance are R =9\,\textOmega\ , L= 8.50E-03H\,, and C=7.20E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  8.384E-02\,A
    \CorrectChoice 9.222E-02\,A
    \choice  1.014E-01\,A
    \choice  1.116E-01\,A
    \choice  1.227E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.76\,V. The resistance, inductance, and capacitance are R =8\,\textOmega\ , L= 3.80E-03H\,, and C=5.60E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  8.636E-02\,A
    \CorrectChoice 9.500E-02\,A
    \choice  1.045E-01\,A
    \choice  1.150E-01\,A
    \choice  1.264E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.83\,V. The resistance, inductance, and capacitance are R =4\,\textOmega\ , L= 4.60E-03H\,, and C=8.10E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  1.417E-01\,A
    \choice  1.559E-01\,A
    \choice  1.715E-01\,A
    \choice  1.886E-01\,A
    \CorrectChoice 2.075E-01\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.44\,V. The resistance, inductance, and capacitance are R =7\,\textOmega\ , L= 5.40E-03H\,, and C=5.70E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  4.723E-02\,A
    \choice  5.195E-02\,A
    \choice  5.714E-02\,A
    \CorrectChoice 6.286E-02\,A
    \choice  6.914E-02\,A
\end{choices} %%% end choices

\question An RLC series combination is driven with an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=0.12\,V. The resistance, inductance, and capacitance are R =3\,\textOmega\ , L= 8.80E-03H\,, and C=6.40E-04\,F, respectively.  What is the amplitude of the current?
\begin{choices} %%%%%%% begin choices
    \choice  2.732E-02\,A
    \choice  3.005E-02\,A
    \choice  3.306E-02\,A
    \choice  3.636E-02\,A
    \CorrectChoice 4.000E-02\,A
\end{choices} %%% end choices
%\pagebreak
%\end{choices}%??????????????
\end{questions}%%%%%%%% end questions

\subsection{}%%%% subsection 7

\begin{questions} %%%%%%% begin questions

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=1\,V. The resistance, inductance, and capacitance are R =0.21\,\textOmega\ , L= 4.80E-03H\,, and C=3.60E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \CorrectChoice Q = 1.739E+02
    \choice  Q = 2.000E+02
    \choice  Q = 2.300E+02
    \choice  Q = 2.645E+02
    \choice  Q = 3.041E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=3\,V. The resistance, inductance, and capacitance are R =0.14\,\textOmega\ , L= 5.20E-03H\,, and C=2.90E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 2.287E+02
    \choice  Q = 2.630E+02
    \CorrectChoice Q = 3.025E+02
    \choice  Q = 3.478E+02
    \choice  Q = 4.000E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=2\,V. The resistance, inductance, and capacitance are R =0.25\,\textOmega\ , L= 4.20E-03H\,, and C=2.70E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.372E+02
    \CorrectChoice Q = 1.578E+02
    \choice  Q = 1.814E+02
    \choice  Q = 2.086E+02
    \choice  Q = 2.399E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=3\,V. The resistance, inductance, and capacitance are R =0.22\,\textOmega\ , L= 5.10E-03H\,, and C=2.50E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \CorrectChoice Q = 2.053E+02
    \choice  Q = 2.361E+02
    \choice  Q = 2.715E+02
    \choice  Q = 3.122E+02
    \choice  Q = 3.591E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=6\,V. The resistance, inductance, and capacitance are R =0.27\,\textOmega\ , L= 4.20E-03H\,, and C=3.70E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 7.135E+01
    \choice  Q = 8.205E+01
    \choice  Q = 9.435E+01
    \choice  Q = 1.085E+02
    \CorrectChoice Q = 1.248E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=4\,V. The resistance, inductance, and capacitance are R =0.2\,\textOmega\ , L= 4.90E-03H\,, and C=2.10E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.381E+02
    \choice  Q = 1.588E+02
    \choice  Q = 1.826E+02
    \choice  Q = 2.100E+02
    \CorrectChoice Q = 2.415E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=2\,V. The resistance, inductance, and capacitance are R =0.28\,\textOmega\ , L= 4.70E-03H\,, and C=2.50E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.171E+02
    \choice  Q = 1.347E+02
    \CorrectChoice Q = 1.549E+02
    \choice  Q = 1.781E+02
    \choice  Q = 2.048E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=3\,V. The resistance, inductance, and capacitance are R =0.21\,\textOmega\ , L= 4.70E-03H\,, and C=3.70E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.476E+02
    \CorrectChoice Q = 1.697E+02
    \choice  Q = 1.952E+02
    \choice  Q = 2.245E+02
    \choice  Q = 2.581E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=5\,V. The resistance, inductance, and capacitance are R =0.13\,\textOmega\ , L= 5.30E-03H\,, and C=2.60E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.986E+02
    \choice  Q = 2.284E+02
    \choice  Q = 2.626E+02
    \choice  Q = 3.020E+02
    \CorrectChoice Q = 3.473E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=5\,V. The resistance, inductance, and capacitance are R =0.27\,\textOmega\ , L= 4.30E-03H\,, and C=2.20E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.238E+02
    \choice  Q = 1.424E+02
    \CorrectChoice Q = 1.637E+02
    \choice  Q = 1.883E+02
    \choice  Q = 2.165E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=4\,V. The resistance, inductance, and capacitance are R =0.25\,\textOmega\ , L= 4.80E-03H\,, and C=2.60E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.300E+02
    \choice  Q = 1.495E+02
    \CorrectChoice Q = 1.719E+02
    \choice  Q = 1.976E+02
    \choice  Q = 2.273E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=3\,V. The resistance, inductance, and capacitance are R =0.25\,\textOmega\ , L= 4.70E-03H\,, and C=3.30E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.313E+02
    \CorrectChoice Q = 1.510E+02
    \choice  Q = 1.736E+02
    \choice  Q = 1.996E+02
    \choice  Q = 2.296E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=5\,V. The resistance, inductance, and capacitance are R =0.21\,\textOmega\ , L= 5.40E-03H\,, and C=3.20E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.286E+02
    \choice  Q = 1.479E+02
    \choice  Q = 1.701E+02
    \CorrectChoice Q = 1.956E+02
    \choice  Q = 2.250E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=3\,V. The resistance, inductance, and capacitance are R =0.29\,\textOmega\ , L= 4.80E-03H\,, and C=2.60E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.288E+02
    \CorrectChoice Q = 1.482E+02
    \choice  Q = 1.704E+02
    \choice  Q = 1.959E+02
    \choice  Q = 2.253E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=6\,V. The resistance, inductance, and capacitance are R =0.3\,\textOmega\ , L= 5.90E-03H\,, and C=3.80E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 7.510E+01
    \choice  Q = 8.636E+01
    \choice  Q = 9.932E+01
    \choice  Q = 1.142E+02
    \CorrectChoice Q = 1.313E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=5\,V. The resistance, inductance, and capacitance are R =0.17\,\textOmega\ , L= 4.40E-03H\,, and C=3.40E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.391E+02
    \choice  Q = 1.600E+02
    \choice  Q = 1.840E+02
    \CorrectChoice Q = 2.116E+02
    \choice  Q = 2.434E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=2\,V. The resistance, inductance, and capacitance are R =0.25\,\textOmega\ , L= 5.40E-03H\,, and C=3.20E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 9.395E+01
    \choice  Q = 1.080E+02
    \choice  Q = 1.242E+02
    \choice  Q = 1.429E+02
    \CorrectChoice Q = 1.643E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=4\,V. The resistance, inductance, and capacitance are R =0.2\,\textOmega\ , L= 5.00E-03H\,, and C=3.20E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.300E+02
    \choice  Q = 1.494E+02
    \choice  Q = 1.719E+02
    \CorrectChoice Q = 1.976E+02
    \choice  Q = 2.273E+02
\end{choices} %%% end choices

\question The quality factor Q is a dimensionless paramater involving the relative values of the magnitudes of the at three impedances (R,\,X\textsubscript{L},\,X\textsubscript{C}).  Since Q is calculatedat resonance, X\textsubscript{L},\,\,X\textsubscript{C} and only twoimpedances are involved,  Q= \textomega\ \textsubscript{0}L/R is  defined so that Q is large if the resistance is low.  Calculate the Q of an LRC series driven at resonance by an applied voltage of of V=V\textsubscript{0}sin(\textomega\ t), where V\textsubscript{0}=1\,V. The resistance, inductance, and capacitance are R =0.2\,\textOmega\ , L= 4.30E-03H\,, and C=3.20E-06\,F, respectively.
\begin{choices} %%%%%%% begin choices
    \choice  Q = 1.048E+02
    \choice  Q = 1.205E+02
    \choice  Q = 1.386E+02
    \choice  Q = 1.594E+02
    \CorrectChoice Q = 1.833E+02
\end{choices} %%% end choices
%\pagebreak
%\end{choices}%??????????????
\end{questions}%%%%%%%% end questions

\subsection{}%%%% subsection 8

\begin{questions} %%%%%%% begin questions

\question A step-down transformer steps 19\,kV down to 220\,V.  The high-voltage input is provided by a 250\,\textOmega\  power line that carries 4\,A of currentWhat is the output current (at the 220\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  2.595E+02\,A
    \choice  2.855E+02\,A
    \choice  3.140E+02\,A
    \CorrectChoice 3.455E+02\,A
    \choice  3.800E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 14\,kV down to 210\,V.  The high-voltage input is provided by a 240\,\textOmega\  power line that carries 3\,A of currentWhat is the output current (at the 210\,V side ?)
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 2.000E+02\,A
    \choice  2.200E+02\,A
    \choice  2.420E+02\,A
    \choice  2.662E+02\,A
    \choice  2.928E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 18\,kV down to 260\,V.  The high-voltage input is provided by a 290\,\textOmega\  power line that carries 3\,A of currentWhat is the output current (at the 260\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  1.888E+02\,A
    \CorrectChoice 2.077E+02\,A
    \choice  2.285E+02\,A
    \choice  2.513E+02\,A
    \choice  2.764E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 9\,kV down to 210\,V.  The high-voltage input is provided by a 170\,\textOmega\  power line that carries 5\,A of currentWhat is the output current (at the 210\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  1.948E+02\,A
    \CorrectChoice 2.143E+02\,A
    \choice  2.357E+02\,A
    \choice  2.593E+02\,A
    \choice  2.852E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 18\,kV down to 230\,V.  The high-voltage input is provided by a 250\,\textOmega\  power line that carries 8\,A of currentWhat is the output current (at the 230\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  5.174E+02\,A
    \choice  5.692E+02\,A
    \CorrectChoice 6.261E+02\,A
    \choice  6.887E+02\,A
    \choice  7.576E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 19\,kV down to 220\,V.  The high-voltage input is provided by a 230\,\textOmega\  power line that carries 5\,A of currentWhat is the output current (at the 220\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  3.244E+02\,A
    \choice  3.569E+02\,A
    \choice  3.926E+02\,A
    \CorrectChoice 4.318E+02\,A
    \choice  4.750E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 8\,kV down to 220\,V.  The high-voltage input is provided by a 110\,\textOmega\  power line that carries 8\,A of currentWhat is the output current (at the 220\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  2.404E+02\,A
    \choice  2.645E+02\,A
    \CorrectChoice 2.909E+02\,A
    \choice  3.200E+02\,A
    \choice  3.520E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 15\,kV down to 240\,V.  The high-voltage input is provided by a 200\,\textOmega\  power line that carries 4\,A of currentWhat is the output current (at the 240\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  1.708E+02\,A
    \choice  1.878E+02\,A
    \choice  2.066E+02\,A
    \choice  2.273E+02\,A
    \CorrectChoice 2.500E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 12\,kV down to 170\,V.  The high-voltage input is provided by a 140\,\textOmega\  power line that carries 9\,A of currentWhat is the output current (at the 170\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  4.773E+02\,A
    \choice  5.250E+02\,A
    \choice  5.775E+02\,A
    \CorrectChoice 6.353E+02\,A
    \choice  6.988E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 16\,kV down to 210\,V.  The high-voltage input is provided by a 200\,\textOmega\  power line that carries 7\,A of currentWhat is the output current (at the 210\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  4.007E+02\,A
    \choice  4.408E+02\,A
    \choice  4.848E+02\,A
    \CorrectChoice 5.333E+02\,A
    \choice  5.867E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 18\,kV down to 170\,V.  The high-voltage input is provided by a 240\,\textOmega\  power line that carries 5\,A of currentWhat is the output current (at the 170\,V side ?)
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 5.294E+02\,A
    \choice  5.824E+02\,A
    \choice  6.406E+02\,A
    \choice  7.046E+02\,A
    \choice  7.751E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 15\,kV down to 240\,V.  The high-voltage input is provided by a 120\,\textOmega\  power line that carries 3\,A of currentWhat is the output current (at the 240\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  1.550E+02\,A
    \choice  1.705E+02\,A
    \CorrectChoice 1.875E+02\,A
    \choice  2.063E+02\,A
    \choice  2.269E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 18\,kV down to 170\,V.  The high-voltage input is provided by a 230\,\textOmega\  power line that carries 5\,A of currentWhat is the output current (at the 170\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  4.375E+02\,A
    \choice  4.813E+02\,A
    \CorrectChoice 5.294E+02\,A
    \choice  5.824E+02\,A
    \choice  6.406E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 6\,kV down to 190\,V.  The high-voltage input is provided by a 130\,\textOmega\  power line that carries 6\,A of currentWhat is the output current (at the 190\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  1.424E+02\,A
    \choice  1.566E+02\,A
    \choice  1.722E+02\,A
    \CorrectChoice 1.895E+02\,A
    \choice  2.084E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 7\,kV down to 190\,V.  The high-voltage input is provided by a 240\,\textOmega\  power line that carries 5\,A of currentWhat is the output current (at the 190\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  1.675E+02\,A
    \CorrectChoice 1.842E+02\,A
    \choice  2.026E+02\,A
    \choice  2.229E+02\,A
    \choice  2.452E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 9\,kV down to 160\,V.  The high-voltage input is provided by a 260\,\textOmega\  power line that carries 7\,A of currentWhat is the output current (at the 160\,V side ?)
\begin{choices} %%%%%%% begin choices
    \CorrectChoice 3.938E+02\,A
    \choice  4.331E+02\,A
    \choice  4.764E+02\,A
    \choice  5.241E+02\,A
    \choice  5.765E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 12\,kV down to 230\,V.  The high-voltage input is provided by a 140\,\textOmega\  power line that carries 5\,A of currentWhat is the output current (at the 230\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  2.156E+02\,A
    \choice  2.372E+02\,A
    \CorrectChoice 2.609E+02\,A
    \choice  2.870E+02\,A
    \choice  3.157E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 19\,kV down to 260\,V.  The high-voltage input is provided by a 290\,\textOmega\  power line that carries 6\,A of currentWhat is the output current (at the 260\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  3.294E+02\,A
    \choice  3.624E+02\,A
    \choice  3.986E+02\,A
    \CorrectChoice 4.385E+02\,A
    \choice  4.823E+02\,A
\end{choices} %%% end choices

\question A step-down transformer steps 15\,kV down to 250\,V.  The high-voltage input is provided by a 130\,\textOmega\  power line that carries 4\,A of currentWhat is the output current (at the 250\,V side ?)
\begin{choices} %%%%%%% begin choices
    \choice  1.983E+02\,A
    \choice  2.182E+02\,A
    \CorrectChoice 2.400E+02\,A
    \choice  2.640E+02\,A
    \choice  2.904E+02\,A
\end{choices} %%% end choices
\end{questions}
\pagebreak

\section{Attribution}
\theendnotes
\end{document}

END LaTexMarkup[edit]

*_End_*[edit]