# QB/c18ElectricChargeField lineCharges

< QB Play media
8 min video

I just made a video that is available in three places:
3-c:File:Open Quizbank Proposal First.webm
Lake Campus Symposium: Creating a bank so students won't break the bank
https://bitbucket.org/Guy_vandegrift/qbwiki/wiki/Home/
The conversion to LaTeX should make this bank more compatible with VLEs
Quizbank - Quizbank/Python/LaTex - Category:QB/LaTeXpdf - QB - edit news
Students with minimal Python skills can now write numerical questions

-

% See special:permalink/1863397 for a wikitext version of this quiz.

### LaTexMarkup begin

%

%This code creates both the question and answer key using \newcommand\mytest
%%%    EDIT QUIZ INFO  HERE   %%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\quizname}{QB/c18ElectricChargeField_lineCharges}

\newcommand{\quiztype}{conceptual}%[[Category:QB/conceptual]]
%%%%% PREAMBLE%%%%%%%%%%%%
\newif\ifkey %estabkishes Boolean ifkey to turn on and off endnotes

\documentclass[11pt]{exam}
\RequirePackage{amssymb, amsfonts, amsmath, latexsym, verbatim,
xspace, setspace,datetime}
\RequirePackage{tikz, pgflibraryplotmarks, hyperref}
\usepackage[left=.5in, right=.5in, bottom=.5in, top=.75in]{geometry}
\usepackage{endnotes, multicol,textgreek} %
\usepackage{graphicx} %
\singlespacing %OR \onehalfspacing OR \doublespacing
\parindent 0ex % Turns off paragraph indentation
% BEGIN DOCUMENT
\begin{document}
\title{c18ElectricChargeField\_lineCharges}
\author{The LaTex code that creates this quiz is released to the Public Domain\\
Attribution for each question is documented in the Appendix}
\maketitle
\begin{center}
\includegraphics[width=0.15\textwidth]{666px-Wikiversity-logo-en.png}
\\Latex markup at\\
\end{center}
\begin{frame}{}
\begin{multicols}{3}
\tableofcontents
\end{multicols}
\end{frame}
\pagebreak\section{Quiz}
\keytrue
\begin{questions}\keytrue

\question A line of charge density \textlambda\  situated on the y axis extends from y = -3 to y = 2. What is the y component of the electric field at the point (3, 7)?$$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal B=$$\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice $$-$$7
\choice $$-$$3
\choice $$-$$3
\choice 3
\CorrectChoice 2
\end{choices}

\question A line of charge density \textlambda\  situated on the y axis extends from y = 4 to y = 6. What is the y component of the electric field at the point (5, 1)?<br />$$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal C=$$:\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice a) 5
\choice b) s$$-$$4
\choice c) 5$$-$$s
\CorrectChoice d) 1$$-$$s
\choice e) s$$-$$1
\end{choices}

\question A line of charge density \textlambda\  situated on the y axis extends from y = 4 to y = 6. What is the y component of the electric field at the point (5, 1)?<br />$$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal F=$$:\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice 1/2
\choice 2/3
\choice 2
\CorrectChoice 3/2
\choice 3
\end{choices}

\question A line of charge density \textlambda\  situated on the x axis extends from x = 3 to x = 7. What is the x component of the electric field at the point (7, 8)?<br />$$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal C=$$:\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice s$$-$$3
\choice 3$$-$$s
\choice 8
\choice s$$-$$7
\CorrectChoice 7$$-$$s
\end{choices}

\question A line of charge density \textlambda\  situated on the x axis extends from x = 3 to x = 7. What is the x component of the electric field at the point (7, 8)?<br />$$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal D^2 + \mathcal E^2=$$:\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice 7\textsuperscript{2} + (8$$-$$s)\textsuperscript{2}
\choice 7\textsuperscript{2} + 8\textsuperscript{2}
\CorrectChoice (7-s)\textsuperscript{2} + 8\textsuperscript{2}
\choice 7\textsuperscript{2} + (3$$-$$s)\textsuperscript{2}
\choice 3\textsuperscript{2} + 8\textsuperscript{2}
\end{choices}

\question A line of charge density \textlambda\  situated on the y axis extends from y = -3 to y = 2. What is the y component of the electric field at the point (3, 7)?$$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal C=$$\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice 3$$-$$s
\choice 3
\choice s$$-$$7
\CorrectChoice 7$$-$$s
\choice s$$-$$3
\end{choices}

\question A line of charge density \textlambda\  situated on the y axis extends from y = -3 to y = 2. What is the y component of the electric field at the point (3, 7)?$$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where$$\mathcal F=$$\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice 2
\choice 3
\CorrectChoice 3/2
\choice 1/2
\end{choices}

\question A line of charge density \textlambda\  situated on the y axis extends from y = 2 to y = 7. What is the y component of the electric field at the point (2, 9)?<br /> $$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal C=$$:\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice 2
\choice s $$-$$ 2
\choice 2 $$-$$ s
\choice s $$-$$ 9
\CorrectChoice 9 $$-$$ s
\end{choices}

\question A line of charge density \textlambda\  situated on the y axis extends from y = 2 to y = 7. What is the y component of the electric field at the point (2, 9)?<br /> $$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal D^2 + \mathcal E^2=$$:\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice 9\textsuperscript{2} + (7-s)\textsuperscript{2}
\choice 9\textsuperscript{2} + (2-s)\textsuperscript{2}
\choice 7\textsuperscript{2} + (2-s)\textsuperscript{2}
\choice 2\textsuperscript{2} + (7-s)\textsuperscript{2}
\CorrectChoice 2\textsuperscript{2} + (9-s)\textsuperscript{2}
\end{choices}

\question A line of charge density \textlambda\  situated on the x axis extends from x = 4 to x = 8. What is the y component of the electric field at the point (8, 4)?<br />$$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal A=$$:\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice 1/2
\CorrectChoice 4
\choice 2
\choice 8
\end{choices}

\question A line of charge density \textlambda\  situated on the x axis extends from x = 4 to x = 8. What is the y component of the electric field at the point (8, 4)?<br />$$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal C=$$:\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice s$$-$$8
\choice 8$$-$$s
\choice s$$-$$4
\choice 4$$-$$s
\CorrectChoice 4
\end{choices}

\question A line of charge density \textlambda\  situated on the x axis extends from x = 4 to x = 8. What is the x component of the electric field at the point (8, 4)?<br />$$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal C=$$:\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\choice s$$-$$8
\CorrectChoice 8$$-$$s
\choice s$$-$$4
\choice 4$$-$$s
\choice 4
\end{choices}

\question A line of charge density \textlambda\  situated on the y axis extends from y = 4 to y = 6. What is the x component of the electric field at the point (5, 1)?<br />$$Answer$$  (assuming $$\mathcal B > \mathcal A$$) $$is: \frac{1}{4\pi\epsilon_0}\int_\mathcal A^\mathcal B\frac{ \mathcal C\;\lambda ds}{\left[\mathcal D^2+\mathcal E^2\right]^\mathcal F\;}$$, where $$\mathcal C=$$:\ifkey\endnote{ placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863397}}}\fi
\begin{choices}
\CorrectChoice 5
\choice s$$-$$4
\choice 5$$-$$s
\choice 1$$-$$s
\choice s$$-$$1
\end{choices}

\end{questions}
\newpage
\end{document}