# QB/a21CircuitsBioInstDC circuits

**I just made a video that is available in three places:**

1- https://www.youtube.com/watch?v=1mwIkHshOIg

2-My facebook page

3-c:File:Open Quizbank Proposal First.webm

See also the pdf printout of the slides

**Lake Campus Symposium: Creating a bank so students won't break the bank**

https://bitbucket.org/Guy_vandegrift/qbwiki/wiki/Home/

The conversion to LaTeX should make this bank more compatible with VLEs

CLICK HERE TO SEE HOW MANY PEOPLE ARE VISITING THESE QUESTIONS

Quizbank - Quizbank/Python/LaTex - Category:QB/LaTeXpdf - QB - edit news

Students with minimal Python skills can now write numerical questions

See special:permalink/1863342 for a wikitext version of this quiz.

### LaTexMarkup begin[edit]

%

%CurrentID: - %PDF: File:Quizbankqb_a21CircuitsBioInstDC circuits.pdf%Required images:

```
%This code creates both the question and answer key using \newcommand\mytest
%%% EDIT QUIZ INFO HERE %%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\quizname}{QB/a21CircuitsBioInstDC_circuits}
\newcommand{\quiztype}{numerical}%[[Category:QB/numerical]]
%%%%% PREAMBLE%%%%%%%%%%%%
\newif\ifkey %estabkishes Boolean ifkey to turn on and off endnotes
\documentclass[11pt]{exam}
\RequirePackage{amssymb, amsfonts, amsmath, latexsym, verbatim,
xspace, setspace,datetime}
\RequirePackage{tikz, pgflibraryplotmarks, hyperref}
\usepackage[left=.5in, right=.5in, bottom=.5in, top=.75in]{geometry}
\usepackage{endnotes, multicol,textgreek} %
\usepackage{graphicx} %
\singlespacing %OR \onehalfspacing OR \doublespacing
\parindent 0ex % Turns off paragraph indentation
\hypersetup{ colorlinks=true, urlcolor=blue}
% BEGIN DOCUMENT
\begin{document}
\title{a21CircuitsBioInstDC\_circuits}
\author{The LaTex code that creates this quiz is released to the Public Domain\\
Attribution for each question is documented in the Appendix}
\maketitle
\begin{center}
\includegraphics[width=0.15\textwidth]{666px-Wikiversity-logo-en.png}
\\Latex markup at\\
\footnotesize{ \url{https://en.wikiversity.org/wiki/special:permalink/1863342}}
\end{center}
\begin{frame}{}
\begin{multicols}{3}
\tableofcontents
\end{multicols}
\end{frame}
\pagebreak\section{Quiz}
\keytrue
\printanswers
\begin{questions}
\question An ideal 5.2 V voltage source is connected to two resistors in parallel. One is 1.2\(k\Omega\), and the other is 2.8 \(k\Omega\). What is the current through the larger resistor?\ifkey\endnote{a21CircuitsBioInstDC\_circuits\_1 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863342}}}\fi
\begin{choices}
\choice 0.7 mA.
\choice 0.9 mA.
\choice 1.1 mA.
\CorrectChoice 1.3 mA.
\choice 1.5 mA.
\end{choices}
\question A 7.7 ohm resistor is connected in series to a pair of 5.8 ohm resistors that are in parallel. What is the net resistance?\ifkey\endnote{a21CircuitsBioInstDC\_circuits\_2 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863342}}}\fi
\begin{choices}
\choice 6.1 ohms.
\choice 7 ohms.
\choice 8 ohms.
\choice 9.2 ohms.
\CorrectChoice 10.6 ohms.
\end{choices}
\question Two 8 ohm resistors are connected in parallel. This combination is then connected in series to a 6.6 ohm resistor. What is the net resistance?\ifkey\endnote{a21CircuitsBioInstDC\_circuits\_3 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863342}}}\fi
\begin{choices}
\choice 9.2 ohms.
\CorrectChoice 10.6 ohms.
\choice 12.2 ohms.
\choice 14 ohms.
\choice 16.1 ohms.
\end{choices}
\question An ideal 7.9 volt battery is connected to a 0.09 ohm resistor. To measure the current an ammeter with a resistance of 20\(m\Omega\) is used. What current does the ammeter actually read?\ifkey\endnote{a21CircuitsBioInstDC\_circuits\_4 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863342}}}\fi
\begin{choices}
\CorrectChoice 71.8 A.
\choice 82.6 A.
\choice 95 A.
\choice 109.2 A.
\choice 125.6 A.
\end{choices}
\question A battery has an emf of 5.3 volts, and an internal resistance of 326 \(k\Omega\). It is connected to a 3 \(M\Omega\) resistor. What power is developed in the 3 \(M\Omega\) resistor?\ifkey\endnote{a21CircuitsBioInstDC\_circuits\_5 placed in Public Domain by Guy Vandegrift: {\url{https://en.wikiversity.org/wiki/special:permalink/1863342}}}\fi
\begin{choices}
\choice 5.01 \(\mu\)W.
\choice 5.76 \(\mu\)W.
\choice 6.62 \(\mu\)W.
\CorrectChoice 7.62 \(\mu\)W.
\choice 8.76 \(\mu\)W.
\end{choices}
\end{questions}
\newpage\section{Renditions}
\subsection{}%%%% subsection 1
\begin{questions} %%%%%%% begin questions
\question An ideal 6.1 V voltage source is connected to two resistors in parallel. One is 2.4\(k\Omega\), and the other is 4.2 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\choice 0.61 mA.
\choice 0.7 mA.
\choice 0.8 mA.
\CorrectChoice 0.92 mA.
\choice 1.06 mA.
\end{choices} %%% end choices
\question An ideal 3.1 V voltage source is connected to two resistors in parallel. One is 1.5\(k\Omega\), and the other is 2.2 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\choice 0.55 mA.
\choice 0.63 mA.
\choice 0.73 mA.
\CorrectChoice 0.84 mA.
\choice 0.96 mA.
\end{choices} %%% end choices
\question An ideal 7.9 V voltage source is connected to two resistors in parallel. One is 2.4\(k\Omega\), and the other is 5.2 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\choice 0.68 mA.
\choice 0.79 mA.
\choice 0.9 mA.
\CorrectChoice 1.04 mA.
\choice 1.2 mA.
\end{choices} %%% end choices
\question An ideal 5.6 V voltage source is connected to two resistors in parallel. One is 2.3\(k\Omega\), and the other is 4.3 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\choice 0.56 mA.
\choice 0.64 mA.
\choice 0.74 mA.
\CorrectChoice 0.85 mA.
\choice 0.98 mA.
\end{choices} %%% end choices
\question An ideal 9.9 V voltage source is connected to two resistors in parallel. One is 0.9\(k\Omega\), and the other is 1.8 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 3.67 mA.
\choice 4.22 mA.
\choice 4.85 mA.
\choice 5.58 mA.
\choice 6.41 mA.
\end{choices} %%% end choices
\question An ideal 9.2 V voltage source is connected to two resistors in parallel. One is 1.1\(k\Omega\), and the other is 2.4 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\choice 2.29 mA.
\CorrectChoice 2.63 mA.
\choice 3.02 mA.
\choice 3.48 mA.
\choice 4 mA.
\end{choices} %%% end choices
\question An ideal 9.4 V voltage source is connected to two resistors in parallel. One is 2.1\(k\Omega\), and the other is 4.3 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 1.47 mA.
\choice 1.69 mA.
\choice 1.94 mA.
\choice 2.23 mA.
\choice 2.57 mA.
\end{choices} %%% end choices
\question An ideal 3.6 V voltage source is connected to two resistors in parallel. One is 2.2\(k\Omega\), and the other is 4.2 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\choice 0.43 mA.
\choice 0.49 mA.
\CorrectChoice 0.56 mA.
\choice 0.65 mA.
\choice 0.74 mA.
\end{choices} %%% end choices
\question An ideal 8.9 V voltage source is connected to two resistors in parallel. One is 2.1\(k\Omega\), and the other is 4.4 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 1.37 mA.
\choice 1.57 mA.
\choice 1.81 mA.
\choice 2.08 mA.
\choice 2.39 mA.
\end{choices} %%% end choices
\question An ideal 4.2 V voltage source is connected to two resistors in parallel. One is 1.6\(k\Omega\), and the other is 2.1 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\choice 0.75 mA.
\choice 0.86 mA.
\choice 0.99 mA.
\CorrectChoice 1.14 mA.
\choice 1.31 mA.
\end{choices} %%% end choices
\question An ideal 5.2 V voltage source is connected to two resistors in parallel. One is 1.2\(k\Omega\), and the other is 3.6 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\choice 0.94 mA.
\CorrectChoice 1.08 mA.
\choice 1.25 mA.
\choice 1.43 mA.
\choice 1.65 mA.
\end{choices} %%% end choices
\question An ideal 8.8 V voltage source is connected to two resistors in parallel. One is 0.8\(k\Omega\), and the other is 2.9 \(k\Omega\). What is the current through the larger resistor?
\begin{choices} %%%%%%% begin choices
\choice 1.56 mA.
\choice 1.8 mA.
\choice 2.07 mA.
\CorrectChoice 2.38 mA.
\choice 2.74 mA.
\pagebreak
\end{choices}
\end{questions}%%%%%%%% end questions
\subsection{}%%%% subsection 2
\begin{questions} %%%%%%% begin questions
\question A 6 ohm resistor is connected in series to a pair of 5 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 7.4 ohms.
\CorrectChoice 8.5 ohms.
\choice 9.8 ohms.
\choice 11.2 ohms.
\choice 12.9 ohms.
\end{choices} %%% end choices
\question A 8 ohm resistor is connected in series to a pair of 5.6 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 7.1 ohms.
\choice 8.2 ohms.
\choice 9.4 ohms.
\CorrectChoice 10.8 ohms.
\choice 12.4 ohms.
\end{choices} %%% end choices
\question A 6.6 ohm resistor is connected in series to a pair of 6.4 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 6.4 ohms.
\choice 7.4 ohms.
\choice 8.5 ohms.
\CorrectChoice 9.8 ohms.
\choice 11.3 ohms.
\end{choices} %%% end choices
\question A 5.9 ohm resistor is connected in series to a pair of 3 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 5.6 ohms.
\choice 6.4 ohms.
\CorrectChoice 7.4 ohms.
\choice 8.5 ohms.
\choice 9.8 ohms.
\end{choices} %%% end choices
\question A 5.7 ohm resistor is connected in series to a pair of 3.8 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 5 ohms.
\choice 5.7 ohms.
\choice 6.6 ohms.
\CorrectChoice 7.6 ohms.
\choice 8.7 ohms.
\end{choices} %%% end choices
\question A 6.4 ohm resistor is connected in series to a pair of 7.4 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 10.1 ohms.
\choice 11.6 ohms.
\choice 13.4 ohms.
\choice 15.4 ohms.
\choice 17.7 ohms.
\end{choices} %%% end choices
\question A 5.6 ohm resistor is connected in series to a pair of 7.2 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 7 ohms.
\choice 8 ohms.
\CorrectChoice 9.2 ohms.
\choice 10.6 ohms.
\choice 12.2 ohms.
\end{choices} %%% end choices
\question A 8.1 ohm resistor is connected in series to a pair of 5.2 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 6.1 ohms.
\choice 7 ohms.
\choice 8.1 ohms.
\choice 9.3 ohms.
\CorrectChoice 10.7 ohms.
\end{choices} %%% end choices
\question A 5.8 ohm resistor is connected in series to a pair of 2.8 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 7.2 ohms.
\choice 8.3 ohms.
\choice 9.5 ohms.
\choice 11 ohms.
\choice 12.6 ohms.
\end{choices} %%% end choices
\question A 7 ohm resistor is connected in series to a pair of 3.4 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 6.6 ohms.
\choice 7.6 ohms.
\CorrectChoice 8.7 ohms.
\choice 10 ohms.
\choice 11.5 ohms.
\end{choices} %%% end choices
\question A 6.3 ohm resistor is connected in series to a pair of 3.4 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 5.3 ohms.
\choice 6 ohms.
\choice 7 ohms.
\CorrectChoice 8 ohms.
\choice 9.2 ohms.
\end{choices} %%% end choices
\question A 7.5 ohm resistor is connected in series to a pair of 7 ohm resistors that are in parallel. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 8.3 ohms.
\choice 9.6 ohms.
\CorrectChoice 11 ohms.
\choice 12.7 ohms.
\choice 14.5 ohms.
\pagebreak
\end{choices}
\end{questions}%%%%%%%% end questions
\subsection{}%%%% subsection 3
\begin{questions} %%%%%%% begin questions
\question Two 8.8 ohm resistors are connected in parallel. This combination is then connected in series to a 2.8 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 6.3 ohms.
\CorrectChoice 7.2 ohms.
\choice 8.3 ohms.
\choice 9.5 ohms.
\choice 11 ohms.
\end{choices} %%% end choices
\question Two 6.2 ohm resistors are connected in parallel. This combination is then connected in series to a 2.4 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 3.1 ohms.
\choice 3.6 ohms.
\choice 4.2 ohms.
\choice 4.8 ohms.
\CorrectChoice 5.5 ohms.
\end{choices} %%% end choices
\question Two 6.6 ohm resistors are connected in parallel. This combination is then connected in series to a 3.4 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 4.4 ohms.
\choice 5.1 ohms.
\choice 5.8 ohms.
\CorrectChoice 6.7 ohms.
\choice 7.7 ohms.
\end{choices} %%% end choices
\question Two 6.2 ohm resistors are connected in parallel. This combination is then connected in series to a 2.6 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 3.7 ohms.
\choice 4.3 ohms.
\choice 5 ohms.
\CorrectChoice 5.7 ohms.
\choice 6.6 ohms.
\end{choices} %%% end choices
\question Two 6.4 ohm resistors are connected in parallel. This combination is then connected in series to a 6.6 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 8.5 ohms.
\CorrectChoice 9.8 ohms.
\choice 11.3 ohms.
\choice 13 ohms.
\choice 14.9 ohms.
\end{choices} %%% end choices
\question Two 8.2 ohm resistors are connected in parallel. This combination is then connected in series to a 5.8 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 9.9 ohms.
\choice 11.4 ohms.
\choice 13.1 ohms.
\choice 15.1 ohms.
\choice 17.3 ohms.
\end{choices} %%% end choices
\question Two 6.2 ohm resistors are connected in parallel. This combination is then connected in series to a 3.4 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 6.5 ohms.
\choice 7.5 ohms.
\choice 8.6 ohms.
\choice 9.9 ohms.
\choice 11.4 ohms.
\end{choices} %%% end choices
\question Two 7 ohm resistors are connected in parallel. This combination is then connected in series to a 2.8 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 5.5 ohms.
\CorrectChoice 6.3 ohms.
\choice 7.2 ohms.
\choice 8.3 ohms.
\choice 9.6 ohms.
\end{choices} %%% end choices
\question Two 9.4 ohm resistors are connected in parallel. This combination is then connected in series to a 2.4 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 5.4 ohms.
\choice 6.2 ohms.
\CorrectChoice 7.1 ohms.
\choice 8.2 ohms.
\choice 9.4 ohms.
\end{choices} %%% end choices
\question Two 7.4 ohm resistors are connected in parallel. This combination is then connected in series to a 2.8 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\choice 5.7 ohms.
\CorrectChoice 6.5 ohms.
\choice 7.5 ohms.
\choice 8.6 ohms.
\choice 9.9 ohms.
\end{choices} %%% end choices
\question Two 8.2 ohm resistors are connected in parallel. This combination is then connected in series to a 5.8 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 9.9 ohms.
\choice 11.4 ohms.
\choice 13.1 ohms.
\choice 15.1 ohms.
\choice 17.3 ohms.
\end{choices} %%% end choices
\question Two 7.8 ohm resistors are connected in parallel. This combination is then connected in series to a 5.4 ohm resistor. What is the net resistance?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 9.3 ohms.
\choice 10.7 ohms.
\choice 12.3 ohms.
\choice 14.1 ohms.
\choice 16.3 ohms.
\pagebreak
\end{choices}
\end{questions}%%%%%%%% end questions
\subsection{}%%%% subsection 4
\begin{questions} %%%%%%% begin questions
\question An ideal 6 volt battery is connected to a 0.073 ohm resistor. To measure the current an ammeter with a resistance of 14\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\choice 60 A.
\CorrectChoice 69 A.
\choice 79.3 A.
\choice 91.2 A.
\choice 104.9 A.
\end{choices} %%% end choices
\question An ideal 7.5 volt battery is connected to a 0.06 ohm resistor. To measure the current an ammeter with a resistance of 19\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\choice 54.3 A.
\choice 62.4 A.
\choice 71.8 A.
\choice 82.6 A.
\CorrectChoice 94.9 A.
\end{choices} %%% end choices
\question An ideal 7.3 volt battery is connected to a 0.071 ohm resistor. To measure the current an ammeter with a resistance of 27\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\choice 49 A.
\choice 56.3 A.
\choice 64.8 A.
\CorrectChoice 74.5 A.
\choice 85.7 A.
\end{choices} %%% end choices
\question An ideal 6.4 volt battery is connected to a 0.071 ohm resistor. To measure the current an ammeter with a resistance of 21\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\choice 60.5 A.
\CorrectChoice 69.6 A.
\choice 80 A.
\choice 92 A.
\choice 105.8 A.
\end{choices} %%% end choices
\question An ideal 6.8 volt battery is connected to a 0.096 ohm resistor. To measure the current an ammeter with a resistance of 29\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\choice 35.8 A.
\choice 41.1 A.
\choice 47.3 A.
\CorrectChoice 54.4 A.
\choice 62.6 A.
\end{choices} %%% end choices
\question An ideal 6 volt battery is connected to a 0.06 ohm resistor. To measure the current an ammeter with a resistance of 25\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 70.6 A.
\choice 81.2 A.
\choice 93.4 A.
\choice 107.4 A.
\choice 123.5 A.
\end{choices} %%% end choices
\question An ideal 7.5 volt battery is connected to a 0.084 ohm resistor. To measure the current an ammeter with a resistance of 14\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\choice 43.8 A.
\choice 50.3 A.
\choice 57.9 A.
\choice 66.5 A.
\CorrectChoice 76.5 A.
\end{choices} %%% end choices
\question An ideal 7.4 volt battery is connected to a 0.074 ohm resistor. To measure the current an ammeter with a resistance of 12\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\choice 49.2 A.
\choice 56.6 A.
\choice 65.1 A.
\choice 74.8 A.
\CorrectChoice 86 A.
\end{choices} %%% end choices
\question An ideal 5.9 volt battery is connected to a 0.059 ohm resistor. To measure the current an ammeter with a resistance of 24\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 71.1 A.
\choice 81.7 A.
\choice 94 A.
\choice 108.1 A.
\choice 124.3 A.
\end{choices} %%% end choices
\question An ideal 7.8 volt battery is connected to a 0.064 ohm resistor. To measure the current an ammeter with a resistance of 17\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\choice 63.3 A.
\choice 72.8 A.
\choice 83.7 A.
\CorrectChoice 96.3 A.
\choice 110.7 A.
\end{choices} %%% end choices
\question An ideal 5.7 volt battery is connected to a 0.091 ohm resistor. To measure the current an ammeter with a resistance of 23\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 50 A.
\choice 57.5 A.
\choice 66.1 A.
\choice 76 A.
\choice 87.5 A.
\end{choices} %%% end choices
\question An ideal 5.7 volt battery is connected to a 0.054 ohm resistor. To measure the current an ammeter with a resistance of 13\(m\Omega\) is used. What current does the ammeter actually read?
\begin{choices} %%%%%%% begin choices
\choice 64.3 A.
\choice 74 A.
\CorrectChoice 85.1 A.
\choice 97.8 A.
\choice 112.5 A.
\pagebreak
\end{choices}
\end{questions}%%%%%%%% end questions
\subsection{}%%%% subsection 5
\begin{questions} %%%%%%% begin questions
\question A battery has an emf of 6.1 volts, and an internal resistance of 366 \(k\Omega\). It is connected to a 3.6 \(M\Omega\) resistor. What power is developed in the 3.6 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\choice 6.44 \(\mu\)W.
\choice 7.41 \(\mu\)W.
\CorrectChoice 8.52 \(\mu\)W.
\choice 9.79 \(\mu\)W.
\choice 11.26 \(\mu\)W.
\end{choices} %%% end choices
\question A battery has an emf of 6.5 volts, and an internal resistance of 446 \(k\Omega\). It is connected to a 3.5 \(M\Omega\) resistor. What power is developed in the 3.5 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\choice 8.26 \(\mu\)W.
\CorrectChoice 9.5 \(\mu\)W.
\choice 10.92 \(\mu\)W.
\choice 12.56 \(\mu\)W.
\choice 14.44 \(\mu\)W.
\end{choices} %%% end choices
\question A battery has an emf of 5.6 volts, and an internal resistance of 295 \(k\Omega\). It is connected to a 4.1 \(M\Omega\) resistor. What power is developed in the 4.1 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\choice 3.81 \(\mu\)W.
\choice 4.38 \(\mu\)W.
\choice 5.03 \(\mu\)W.
\choice 5.79 \(\mu\)W.
\CorrectChoice 6.66 \(\mu\)W.
\end{choices} %%% end choices
\question A battery has an emf of 5.3 volts, and an internal resistance of 428 \(k\Omega\). It is connected to a 2.3 \(M\Omega\) resistor. What power is developed in the 2.3 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\choice 4.96 \(\mu\)W.
\choice 5.71 \(\mu\)W.
\choice 6.56 \(\mu\)W.
\choice 7.55 \(\mu\)W.
\CorrectChoice 8.68 \(\mu\)W.
\end{choices} %%% end choices
\question A battery has an emf of 5.5 volts, and an internal resistance of 296 \(k\Omega\). It is connected to a 3.3 \(M\Omega\) resistor. What power is developed in the 3.3 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 7.72 \(\mu\)W.
\choice 8.88 \(\mu\)W.
\choice 10.21 \(\mu\)W.
\choice 11.74 \(\mu\)W.
\choice 13.5 \(\mu\)W.
\end{choices} %%% end choices
\question A battery has an emf of 7.8 volts, and an internal resistance of 351 \(k\Omega\). It is connected to a 4.2 \(M\Omega\) resistor. What power is developed in the 4.2 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 12.34 \(\mu\)W.
\choice 14.19 \(\mu\)W.
\choice 16.32 \(\mu\)W.
\choice 18.76 \(\mu\)W.
\choice 21.58 \(\mu\)W.
\end{choices} %%% end choices
\question A battery has an emf of 5.6 volts, and an internal resistance of 450 \(k\Omega\). It is connected to a 2.7 \(M\Omega\) resistor. What power is developed in the 2.7 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\choice 4.88 \(\mu\)W.
\choice 5.61 \(\mu\)W.
\choice 6.45 \(\mu\)W.
\choice 7.42 \(\mu\)W.
\CorrectChoice 8.53 \(\mu\)W.
\end{choices} %%% end choices
\question A battery has an emf of 6.7 volts, and an internal resistance of 348 \(k\Omega\). It is connected to a 3.8 \(M\Omega\) resistor. What power is developed in the 3.8 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 9.91 \(\mu\)W.
\choice 11.4 \(\mu\)W.
\choice 13.11 \(\mu\)W.
\choice 15.08 \(\mu\)W.
\choice 17.34 \(\mu\)W.
\end{choices} %%% end choices
\question A battery has an emf of 7.1 volts, and an internal resistance of 246 \(k\Omega\). It is connected to a 3.3 \(M\Omega\) resistor. What power is developed in the 3.3 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\choice 10 \(\mu\)W.
\choice 11.5 \(\mu\)W.
\CorrectChoice 13.23 \(\mu\)W.
\choice 15.21 \(\mu\)W.
\choice 17.5 \(\mu\)W.
\end{choices} %%% end choices
\question A battery has an emf of 5.6 volts, and an internal resistance of 460 \(k\Omega\). It is connected to a 2.4 \(M\Omega\) resistor. What power is developed in the 2.4 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\choice 6.05 \(\mu\)W.
\choice 6.96 \(\mu\)W.
\choice 8 \(\mu\)W.
\CorrectChoice 9.2 \(\mu\)W.
\choice 10.58 \(\mu\)W.
\end{choices} %%% end choices
\question A battery has an emf of 7 volts, and an internal resistance of 357 \(k\Omega\). It is connected to a 2.9 \(M\Omega\) resistor. What power is developed in the 2.9 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\CorrectChoice 13.4 \(\mu\)W.
\choice 15.4 \(\mu\)W.
\choice 17.72 \(\mu\)W.
\choice 20.37 \(\mu\)W.
\choice 23.43 \(\mu\)W.
\end{choices} %%% end choices
\question A battery has an emf of 6.5 volts, and an internal resistance of 244 \(k\Omega\). It is connected to a 4 \(M\Omega\) resistor. What power is developed in the 4 \(M\Omega\) resistor?
\begin{choices} %%%%%%% begin choices
\choice 7.09 \(\mu\)W.
\choice 8.16 \(\mu\)W.
\CorrectChoice 9.38 \(\mu\)W.
\choice 10.79 \(\mu\)W.
\choice 12.41 \(\mu\)W.
\end{choices} %%% end choices
\end{questions}\pagebreak
\section{Attribution}
\theendnotes
\end{document}
```

<!This is a wiktext statment that does no harm to the LaTex markup (after end of document)-->