Jump to content

PlanetPhysics/Axiomatics and Categorical Foundations of Mathematical Physics

From Wikiversity

Axiomatics and Categorical Foundations of Mathematical Physics

[edit | edit source]

This is a contributed new topic on the mathematical foundations of theoretical physics and quantum theories.

  1. Axiomatic foundations of quantum field theories
  2. quantum logics and logic algebras: Post and logics
  3. Index of Quantum Algebraic Topology #adjointness, equivalence, isomorphism at the foundations of categorical physics #category theory in quantum physics and general relativity #Categories of quantum logic algebras
  4. functor categories and super-categories #index of category theory #indexes of category
  5. classification of -algebras and groupoid convolution -algebras
  6. Quantum topoi and quantum logic extended-toposes
  7. non-Abelian structures and gauge theories
  8. Non-Abelian Quantum Algebraic Topology and AQFT #Classical and categorical Galois theories of quantum groups and quantum groupoids
  9. Theory of quantum computation: quantum logics, quantum automata and quantum computation
  10. Measure theory and probability in quantum statistical mechanics #quantum symmetries and quantum groupoid representation theory
  11. noncommutative geometry, SUSY and axiomatic quantum gravity (AQG)

Literature references for mathematical physics foundations: axiomatics and categories

All Sources

[edit | edit source]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [187] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259]

References

[edit | edit source]
  1. Alfsen, E.M. and F. W. Schultz: \emph{Geometry of State Spaces of Operator Algebras}, Birkhauser, Boston--Basel--Berlin (2003).
  2. Atiyah, M.F. 1956. On the Krull-Schmidt theorem with applications to sheaves. Bull. Soc. Math. France , 84 : 307--317.
  3. Awodey, S. \& Butz, C., 2000, Topological Completeness for Higher Order Logic., Journal of Symbolic Logic, 65, 3, 1168--1182.
  4. Awodey, S., 1996, Structure in Mathematics and Logic: A Categorical Perspective, Philosophia Mathematica , 3: 209--237.
  5. Awodey, S., 2004, An Answer to Hellman's Question: Does Category Theory Provide a Framework for Mathematical Structuralism, Philosophia Mathematica , 12: 54--64.
  6. Awodey, S., 2006, Category Theory, Oxford: Clarendon Press.
  7. Baez, J. \& Dolan, J., 1998a, Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes, in: Advances in Mathematics , 135, 145--206.
  8. Baez, J. \& Dolan, J., 1998b, "Categorification", Higher Category Theory, Contemporary Mathematics, 230, Providence: AMS, 1--36.
  9. Baez, J. \& Dolan, J., 2001, From Finite Sets to Feynman Diagrams, in Mathematics Unlimited -- 2001 and Beyond , Berlin: Springer, 29--50.
  10. Baez, J., 1997, An Introduction to n-Categories, in Category Theory and Computer Science, Lecture Notes in Computer Science , 1290, Berlin: Springer-Verlag, 1--33.
  11. 11.0 11.1 Baianu, I.C.: 1971a, Organismic Supercategories and Qualitative Dynamics of Systems. Ibid. , 33 (3), 339--354. Cite error: Invalid <ref> tag; name "ICB4" defined multiple times with different content
  12. Baianu, I.C.: 2004a, Quantum Nano--Automata (QNA): Microphysical Measurements with Microphysical QNA Instruments, CERN Preprint EXT--2004--125 .
  13. Baianu I. C., Brown R., Georgescu G. and J. F. Glazebrook: 2006b, Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and \L ukasiewicz--Moisil Topos: Transformations of Neuronal, Genetic and Neoplastic Networks., Axiomathes , 16 Nos. 1--2: 65--122.
  14. Baianu, I.C., R. Brown and J. F. Glazebrook: 2007b, A Non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity, Axiomathes , 17: 169-225.
  15. Barr, M and C.~Wells. Toposes, Triples and Theories . Montreal: McGill University, 2000.
  16. Barr, M. \& Wells, C., 1999, Category Theory for Computing Science, Montreal: CRM.
  17. Batanin, M., 1998, Monoidal Globular Categories as a Natural Environment for the Theory of Weak n-Categories, Advances in Mathematics , 136: 39--103.
  18. Bell, J. L., 1981, Category Theory and the Foundations of Mathematics, British Journal for the Philosophy of Science , 32, 349--358.
  19. Bell, J. L., 1982, Categories, Toposes and Sets, Synthese , 51, 3, 293--337.
  20. Bell, J. L., 1986, From Absolute to Local Mathematics, Synthese , 69, 3, 409--426.
  21. Bell, J. L., 1988, Toposes and Local Set Theories: An Introduction, Oxford: Oxford University Press.
  22. Birkoff, G. \& Mac Lane, S., 1999, Algebra, 3rd ed., Providence: AMS.
  23. Biss, D.K., 2003, Which Functor is the Projective Line?, American Mathematical Monthly , 110, 7, 574--592.
  24. Blass, A. \& Scedrov, A., 1983, Classifying Topoi and Finite Forcing , Journal of Pure and Applied Algebra, 28, 111--140.
  25. Blass, A., 1984, The Interaction Between Category Theory and Set Theory., Mathematical Applications of Category Theory, 30, Providence: AMS, 5--29.
  26. Borceux, F.: 1994, Handbook of Categorical Algebra , vols: 1--3, in Encyclopedia of Mathematics and its Applications 50 to 52 , Cambridge University Press.
  27. Bourbaki, N. 1961 and 1964: Alg\`{e bre commutative.}, in \`{E}l\'{e}ments de Math\'{e}matique., Chs. 1--6., Hermann: Paris.
  28. R. Brown: Topology and Groupoids , BookSurge LLC (2006).
  29. Brown, R. and G. Janelidze: 2004, Galois theory and a new homotopy double groupoid of a map of spaces, Applied Categorical Structures 12 : 63-80.
  30. Brown, R., Higgins, P. J. and R. Sivera,: 2007a, Non-Abelian Algebraic Topology , (vol. 2 in preparation; vol. 1 is available at Bangor Univ. R. Brown's website for download as PDF.)
  31. Brown, R., Glazebrook, J. F. and I.C. Baianu.: 2007b, A Conceptual, Categorical and Higher Dimensional Algebra Framework of Universal Ontology and the Theory of Levels for Highly Complex Structures and Dynamics., Axiomathes (17): 321--379.
  32. Brown, R., Hardie, K., Kamps, H. and T. Porter: 2002, The homotopy double groupoid of a Hausdorff space., Theory and Applications of Categories 10 , 71-93.
  33. Brown, R., and Hardy, J.P.L.:1976, Topological groupoids I: universal constructions, Math. Nachr. , 71: 273-286.
  34. Brown, R. and Spencer, C.B.: 1976, Double groupoids and crossed modules, Cah. Top. G\'{e om. Diff.} 17 , 343-362.
  35. Brown R, and Porter T (2006) Category theory: an abstract setting for analogy and comparison. In: What is category theory? Advanced studies in mathematics and logic . Polimetrica Publisher, Italy, pp. 257-274.
  36. Brown R, Razak Salleh A (1999) Free crossed resolutions of groups and presentations of modules of identities among relations. LMS J. Comput. Math. , 2 : 25--61.
  37. Buchsbaum, D. A.: 1955, Exact categories and duality., Trans. Amer. Math. Soc. 80 : 1-34.
  38. Bucur, I., and Deleanu A. (1968). Introduction to the Theory of Categories and Functors . J.Wiley and Sons: London
  39. Bunge, M. and S. Lack: 2003, Van Kampen theorems for toposes, Adv. in Math. 179 , 291-317.
  40. Bunge, M., 1974, Topos Theory and Souslin's Hypothesis, Journal of Pure and Applied Algebra, 4, 159-187.
  41. Bunge, M., 1984, Toposes in Logic and Logic in Toposes, Topoi, 3, no. 1, 13-22.
  42. Bunge M, Lack S (2003) Van Kampen theorems for toposes. Adv Math , \textbf {179}: 291-317.
  43. Butterfield J., Isham C.J. (2001) Spacetime and the philosophical challenges of quantum gravity. In: Callender C, Hugget N (eds) Physics meets philosophy at the Planck scale. Cambridge University Press, pp 33-89.
  44. Butterfield J., Isham C.J. 1998, 1999, 2000-2002, A topos perspective on the Kochen-Specker theorem I-IV, Int J Theor Phys 37(11):2669-2733; 38(3):827-859; 39(6):1413-1436; 41(4): 613-639.
  45. Cartan, H. and Eilenberg, S. 1956. Homological Algebra , Princeton Univ. Press: Pinceton.
  46. M. Chaician and A. Demichev. 1996. Introduction to Quantum Groups, World Scientific .
  47. Chevalley, C. 1946. The theory of Lie groups. Princeton University Press, Princeton NJ
  48. Cohen, P.M. 1965. Universal Algebra , Harper and Row: New York, london and Tokyo.
  49. M. Crainic and R. Fernandes.2003. Integrability of Lie brackets, Ann.of Math . 157 : 575-620.
  50. Connes A 1994. Noncommutative geometry . Academic Press: New York.
  51. Croisot, R. and Lesieur, L. 1963. Alg\`ebre noeth\'erienne non-commutative. , Gauthier-Villard: Paris.
  52. Crole, R.L., 1994, Categories for Types , Cambridge: Cambridge University Press.
  53. Dieudonn\'e, J. \& Grothendieck, A., 1960, [1971], \'El\'ements de G\'eom\'etrie Alg\'ebrique, Berlin: Springer-Verlag.
  54. Dirac, P. A. M., 1930, The Principles of Quantum Mechanics , Oxford: Clarendon Press.
  55. Dirac, P. A. M., 1933, The Lagrangian in Quantum Mechanics , Physikalische Zeitschrift der Sowietunion, 3 : 64-72.
  56. Dirac, P. A. M.,, 1943, Quantum Electrodynamics , Communications of the Dublin Institute for Advanced Studies, A1 : 1-36.
  57. Dixmier, J., 1981, Von Neumann Algebras, Amsterdam: North-Holland Publishing Company. [First published in French in 1957: Les Algebres d'Operateurs dans l'Espace Hilbertien, Paris: Gauthier--Villars.]
  58. M. Durdevich : Geometry of quantum principal bundles I, Commun. Math. Phys. 175 (3) (1996), 457--521.
  59. M. Durdevich : Geometry of quantum principal bundles II, Rev. Math. Phys. 9 (5) (1997), 531--607.
  60. 60.0 60.1 Ehresmann, C.: 1965, Cat\'egories et Structures , Dunod, Paris. Cite error: Invalid <ref> tag; name "EC" defined multiple times with different content
  61. Ehresmann, C.: 1952, Structures locales et structures infinit\'esimales, C.R.A.S. Paris 274 : 587-589.
  62. Ehresmann, C.: 1959, Cat\'egories topologiques et cat\'egories diff\'erentiables, Coll. G\'eom. Diff. Glob. Bruxelles, pp.137-150.
  63. Ehresmann, C.:1963, Cat\'egories doubles des quintettes: applications covariantes , C.R.A.S. Paris , 256 : 1891--1894.
  64. Ehresmann, C.: 1984, Oeuvres compl\`etes et comment\'ees: Amiens, 1980-84 , edited and commented by Andr\'ee Ehresmann.
  65. Eilenberg, S. and S. Mac Lane.: 1942, Natural Isomorphisms in Group Theory., American Mathematical Society 43 : 757-831.
  66. Eilenberg, S. and S. Mac Lane: 1945, The General Theory of Natural Equivalences, Transactions of the American Mathematical Society 58 : 231-294.
  67. Eilenberg, S. \& MacLane, S., 1942, Group Extensions and Homology, Annals of Mathematics, 43, 757--831.
  68. Eilenberg, S. \& Steenrod, N., 1952, Foundations of Algebraic Topology, Princeton: Princeton University Press.
  69. Eilenberg, S.: 1960. Abstract description of some basic functors., J. Indian Math.Soc., 24 :221-234.
  70. S.Eilenberg. Relations between Homology and Homotopy Groups. Proc.Natl.Acad.Sci.USA (1966),v:10--14.
  71. Ellerman, D., 1988, Category Theory and Concrete Universals, Synthese, 28, 409--429.
  72. Z. F. Ezawa, G. Tsitsishvilli and K. Hasebe : Noncommutative geometry, extended algebra and Grassmannian solitons in multicomponent Hall systems, arXiv:hep--th/0209198.
  73. Fell, J. M. G., 1960. The Dual Spaces of C*-Algebras, Transactions of the American Mathematical Society , 94: 365-403.
  74. Feynman, R. P., 1948, Space--Time Approach to Non--Relativistic Quantum Mechanics., Reviews of Modern Physics , 20: 367--387. [It is reprinted in (Schwinger 1958).]
  75. Freyd, P., 1960. Functor Theory (Dissertation). Princeton University, Princeton, New Jersey.
  76. Freyd, P., 1963, Relative homological algebra made absolute. , Proc. Natl. Acad. USA , 49 :19-20.
  77. Freyd, P., 1964, Abelian Categories. An Introduction to the Theory of Functors, New York and London: Harper and Row.
  78. Freyd, P., 1965, The Theories of Functors and Models., Theories of Models , Amsterdam: North Holland, 107--120.
  79. Freyd, P., 1966, Algebra-valued Functors in general categories and tensor product in particular., Colloq. Mat . {14}: 89--105.
  80. Freyd, P., 1972, Aspects of Topoi,Bulletin of the Australian Mathematical Society , 7 : 1--76.
  81. Freyd, P., 1990, Categories, Allegories, Amsterdam: North Holland.
  82. Freyd, P., 2002, "Cartesian Logic", Theoretical Computer Science, 278, no. 1--2, 3--21.
  83. Freyd, P., Friedman, H. \& Scedrov, A., 1987, "Lindembaum Algebras of Intuitionistic Theories and Free Categories"., Annals of Pure and Applied Logic, 35, 2, 167--172.
  84. Gablot, R. 1971. Sur deux classes de cat\'{e}gories de Grothendieck. Thesis.. Univ. de Lille.
  85. Gabriel, P.: 1962, Des cat\'egories ab\'eliennes, \emph{Bull. Soc. Math. France} 90 : 323-448.
  86. Gabriel, P. and M.Zisman:. 1967: Category of fractions and homotopy theory , Ergebnesse der math. Springer: Berlin.
  87. Gabriel, P. and N. Popescu: 1964, Caract\'{e}risation des cat\'egories ab\'eliennes avec g\'{e}n\'{e}rateurs et limites inductives. , CRAS Paris 258 : 4188-4191.
  88. Galli, A. \& Reyes, G. \& Sagastume, M., 2000, Completeness Theorems via the Double Dual Functor, Studia Logical, 64, no. 1, 61--81.
  89. Gelfan'd, I. and Naimark, M., 1943. On the Imbedding of Normed Rings into the Ring of Operators in Hilbert Space., Recueil Math\'ematique [Matematicheskii Sbornik] Nouvelle S\'erie, 12 [54]: 197-213. [Reprinted in C*--algebras: 1943--1993, in the series Contemporary Mathematics, 167, Providence, R.I. : American Mathematical Society, 1994.]
  90. Georgescu, G. and C. Vraciu 1970. On the Characterization of \L{}ukasiewicz Algebras. J Algebra , 16 (4), 486-495.
  91. Ghilardi, S. \& Zawadowski, M., 2002, Sheaves, Games \& Model Completions: A Categorical Approach to Nonclassical Porpositional Logics, Dordrecht: Kluwer.
  92. Ghilardi, S., 1989, Presheaf Semantics and Independence Results for some Non-classical first-order logics, Archive for Mathematical Logic, 29, no. 2, 125--136.
  93. Goblot, R., 1968, Cat\'egories modulaires , C. R. Acad. Sci. Paris, S\'erie A. , 267 : 381--383.
  94. Goblot, R., 1971, Sur deux classes de cat\'egories de Grothendieck, Th\`ese. , Univ. Lille, 1971.
  95. Goldblatt, R., 1979, Topoi: The Categorical Analysis of Logic, Studies in logic and the foundations of mathematics, Amsterdam: Elsevier North-Holland Publ. Comp.
  96. Goldie, A. W., 1964, Localization in non-commutative noetherian rings, J.Algebra , 1 : 286-297.
  97. Godement,R. 1958. Th\'{e}orie des faisceaux. Hermann: Paris.
  98. Gray, C. W.: 1965. Sheaves with values in a category.,\emph {Topology}, 3: 1-18.
  99. Grothendieck, A.: 1971, Rev\^{e}tements \'Etales et Groupe Fondamental (SGA1), chapter VI: Cat\'egories fibr\'ees et descente, Lecture Notes in Math. 224 , Springer--Verlag: Berlin.
  100. Grothendieck, A.: 1957, Sur quelque point d-alg\'{e}bre homologique. , Tohoku Math. J. , 9: 119-121.
  101. Grothendieck, A. and J. Dieudon\'{e}.: 1960, El\'{e}ments de geometrie alg\'{e}brique., Publ. Inst. des Hautes Etudes de Science , 4 .
  102. Grothendieck, A. et al., S\'eminaire de G\'eom\'etrie Alg\'ebrique, Vol. 1--7, Berlin: Springer-Verlag.
  103. Groups Authors: J. Faria Martins, Timothy Porter., On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical .
  104. Gruson, L, 1966, Compl\'etion ab\'elienne. Bull. Math.Soc. France , 90 : 17-40.
  105. K.A. Hardie, K.H. Kamps and R.W. Kieboom. 2000. A homotopy 2-groupoid of a Hausdorff space, Applied Cat. Structures 8: 209--234.
  106. Hatcher, W. S. 1982. The Logical Foundations of Mathematics , Oxford: Pergamon Press.
  107. Heller, A. :1958, Homological algebra in Abelian categories., Ann. of Math. 68 : 484-525.
  108. Heller, A. and K. A. Rowe.:1962, On the category of sheaves., Amer J. Math. 84 : 205-216.
  109. Hermida, C. \& Makkai, M. \& Power, J., 2000, On Weak Higher-dimensional Categories. I, Journal of Pure and Applied Algebra, 154, no. 1-3, 221--246.
  110. Hermida, C. \& Makkai, M. \& Power, J., 2001, On Weak Higher-dimensional Categories. II, Journal of Pure and Applied Algebra, 157, no. 2-3, 247--277.
  111. Hermida, C. \& Makkai, M. \& Power, J., 2002, On Weak Higher-dimensional Categories. III, Journal of Pure and Applied Algebra, 166, no. 1-2, 83--104.
  112. Higgins, P. J.: 2005, Categories and groupoids , Van Nostrand Mathematical Studies: 32, (1971); \emph{Reprints in Theory and Applications of Categories}, No. 7: 1-195.
  113. Higgins, Philip J. Thin elements and commutative shells in cubical -categories. Theory Appl. Categ. 14 (2005), No. 4, 60--74 (electronic). msc: 18D05.
  114. Hyland, J.M.E. \& Robinson, E.P. \& Rosolini, G., 1990, The Discrete Objects in the Effective Topos, Proceedings of the London Mathematical Society (3), 60, no. 1, 1--36.
  115. Hyland, J. M..E., 1988, A Small Complete Category, Annals of Pure and Applied Logic, 40, no. 2, 135--165.
  116. Hyland, J. M .E., 1991, First Steps in Synthetic Domain Theory, Category Theory (Como 1990), Lecture Notes in Mathematics, 1488, Berlin: Springer, 131-156.
  117. Hyland, J. M.E., 2002, Proof Theory in the Abstract, Annals of Pure and Applied Logic, 114, no. 1--3, 43--78.
  118. E.Hurewicz. CW Complexes.Trans AMS.1955.
  119. Ionescu, Th., R. Parvan and I. Baianu, 1970, C. R. Acad. Sci. Paris, S\'erie A. , 269 : 112-116, communiqu\'ee par Louis N\'eel .
  120. C. J. Isham : A new approach to quantising space--time: I. quantising on a general category, Adv. Theor. Math. Phys. 7 (2003), 331--367.
  121. Jacobs, B., 1999, Categorical Logic and Type Theory, Amsterdam: North Holland.
  122. Johnstone, P. T., 1977, Topos Theory, New York: Academic Press.
  123. Johnstone, P. T., 1979a, Conditions Related to De Morgan's Law, Applications of Sheaves, Lecture Notes in Mathematics, 753, Berlin: Springer, 479--491.
  124. Johnstone, P. T., 1982, Stone Spaces, Cambridge:Cambridge University Press.
  125. Johnstone, P. T., 1985, "How General is a Generalized Space?", Aspects of Topology, Cambridge: Cambridge University Press, 77--111.
  126. Joyal, A. \& Moerdijk, I., 1995, Algebraic Set Theory, Cambridge: Cambridge University Press.
  127. Van Kampen, E. H.: 1933, On the Connection Between the Fundamental Groups of some Related Spaces, Amer. J. Math. 55 : 261-267
  128. Kan, D. M., 1958, Adjoint Functors, Transactions of the American Mathematical Society , 87, 294-329.
  129. Kleisli, H.: 1962, Homotopy theory in Abelian categories.,Can. J. Math. , 14 : 139-169.
  130. Knight, J.T., 1970, On epimorphisms of non-commutative rings., Proc. Cambridge Phil. Soc. , 25 : 266-271.
  131. Kock, A., 1981, Synthetic Differential Geometry, London Mathematical Society Lecture Note Series, 51, Cambridge: Cambridge University Press.
  132. S. Kobayashi and K. Nomizu. Foundations of Differential Geometry Vol I., Wiley Interscience, New York--London 1963.
  133. H. Krips.1999. Measurement in Quantum Theory. , \emph{The Stanford Encyclopedia of Philosophy} ({Winter 1999 Edition}), Edward N. Zalta (ed.)
  134. Lam, T. Y., 1966, "The category of noetherian modules.", Proc. Natl. Acad. Sci. USA , 55 : 1038-104.
  135. Lambek, J. \& Scott, P. J., 1981, Intuitionistic Type Theory and Foundations, Journal of Philosophical Logic, 10, 1, 101--115.
  136. Lambek, J., 1968, Deductive Systems and Categories I. Syntactic Calculus and Residuated Categories, Mathematical Systems Theory, 2, 287--318.
  137. Lambek, J., 1969, Deductive Systems and Categories II. Standard Constructions and Closed Categories, Category Theory, Homology Theory and their Applications I, Berlin: Springer, 76--122.
  138. Lambek, J., 1972, Deductive Systems and Categories III. Cartesian Closed Categories, Intuitionistic Propositional Calculus, and Combinatory Logic, Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics, 274, Berlin: Springer, 57--82.
  139. Lambek, J., 1989A, On Some Connections Between Logic and Category Theory, Studia Logica, 48, 3, 269--278.
  140. Lambek, J., 1989B, On the Sheaf of Possible Worlds, Categorical Topology and its relation to Analysis, Algebra and Combinatorics, Teaneck: World Scientific Publishing, 36--53.
  141. Lambek, J., 1994a, Some Aspects of Categorical Logic, in Logic, Methodology and Philosophy of Science IX, Studies in Logic and the Foundations of Mathematics 134, Amsterdam: North Holland, 69--89.
  142. Lambek, J., 1994b, What is a Deductive System?, What is a Logical System?, Studies in Logic and Computation, 4, Oxford: Oxford University Press, 141--159.
  143. Lambek, J., 2004, What is the world of Mathematics? Provinces of Logic Determined, Annals of Pure and Applied Logic, 126(1-3), 149--158.
  144. Lambek, J. and P.~J.~Scott. Introduction to higher order categorical logic . Cambridge University Press, 1986.
  145. E. C. Lance : Hilbert C*--Modules. \emph{London Math. Soc. Lect. Notes} 210 , Cambridge Univ. Press. 1995.
  146. Landry, E. \& Marquis, J.-P., 2005, Categories in Context: Historical, Foundational and philosophical, Philosophia Mathematica, 13, 1--43.
  147. Landry, E., 2001, Logicism, Structuralism and Objectivity, Topoi, 20, 1, 79--95.
  148. Landsman, N. P.: 1998, Mathematical Topics between Classical and Quantum Mechanics , Springer Verlag: New York.
  149. N. P. Landsman : Mathematical topics between classical and quantum mechanics. Springer Verlag , New York, 1998.
  150. N. P. Landsman : Compact quantum groupoids,
  151. La Palme Reyes, M., et. al., 1994, The non-Boolean Logic of Natural Language Negation, Philosophia Mathematica, 2, no. 1, 45--68.
  152. La Palme Reyes, M., et. al., 1999, Count Nouns, Mass Nouns, and their Transformations: a Unified Category-theoretic Semantics, in Language, Logic and Concepts , Cambridge: MIT Press, 427--452.
  153. Lawvere, F. W., 1964, An Elementary Theory of the Category of Sets, Proceedings of the National Academy of Sciences U.S.A. , 52, 1506--1511.
  154. Lawvere, F. W., 1965, Algebraic Theories, Algebraic Categories, and Algebraic Functors, in Theory of Models , Amsterdam: North Holland, 413--418.
  155. Lawvere, F. W., 1966, The Category of Categories as a Foundation for Mathematics, in Proceedings of the Conference on Categorical Algebra, La Jolla , New York: Springer-Verlag, 1--21.
  156. Lawvere, F. W., 1969a, Diagonal Arguments and Cartesian Closed Categories, in Category Theory, Homology Theory, and their Applications II , Berlin: Springer, 134--145.
  157. Lawvere, F. W., 1969b, Adjointness in Foundations, Dialectica , 23, 281--295.
  158. Lawvere, F. W., 1970, Equality in Hyper-doctrines and Comprehension Schema as an Adjoint Functor, Applications of Categorical Algebra , Providence: AMS, 1-14.
  159. Lawvere, F. W., 1971, Quantifiers and Sheaves, Actes du Congr\'Es International des Math\'Ematiciens, Tome 1, Paris: Gauthier-Villars, 329--334.
  160. Lawvere, F. W., 1972, "Introduction", in Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics , 274, Springer-Verlag, 1--12.
  161. Lawvere, F. W., 1975, Continuously Variable Sets: Algebraic Geometry = Geometric Logic, in Proceedings of the Logic Colloquium Bristol 1973, Amsterdam: North Holland, 135--153.
  162. Lawvere, F. W., 1976, Variable Quantities and Variable Structures in Topoi, in Algebra, Topology, and Category Theory, New York: Academic Press , 101--131.
  163. Lawvere, F. W.: 1963, Functorial Semantics of Algebraic Theories, Proc. Natl. Acad. Sci. USA, Mathematics , 50 : 869-872.
  164. Lawvere, F. W.: 1969, Closed Cartesian Categories ., Lecture held as a guest of the Romanian Academy of Sciences, Bucharest.
  165. Lawvere, F. W., 1992. Categories of Space and of Quantity, The Space of Mathematics, Foundations of Communication and Cognition.
  166. Lawvere, F. W., 2002, Categorical Algebra for Continuum Micro-Physics, Journal of Pure and Applied Algebra, 175, no. 1--3, 267--287.
  167. Lawvere, F. W., 2003, Foundations and Applications: Axiomatization and Education. New Programs and Open Problems in the Foundation of Mathematics, Bulletin of Symbolic Logic , 9, 2, 213--224.
  168. Leinster, T., 2002, A Survey of Definitions of n-categories, in Theory and Applications of Categories , (electronic), 10 , 1--70.
  169. Li, M. and P. Vitanyi: 1997, An introduction to Kolmogorov Complexity and its Applications , Springer Verlag: New York.
  170. Lubkin, S., 1960. Imbedding of abelian categories., Trans. Amer. Math. Soc. , 97 : 410-417.
  171. K. C. H. Mackenzie : Lie Groupoids and Lie Algebroids in Differential Geometry, LMS Lect. Notes 124 , Cambridge University Press, 1987
  172. MacLane, S.: 1948. Groups, categories, and duality., Proc. Natl. Acad. Sci.U.S.A , 34 : 263-267.
  173. MacLane, S., 1969, Foundations for Categories and Sets, in Category Theory, Homology Theory and their Applications II , Berlin: Springer, 146--164.
  174. MacLane, S., 1971, Categorical algebra and Set-Theoretic Foundations, in Axiomatic Set Theory , Providence: AMS, 231--240.
  175. Mac Lane, S., 1975, Sets, Topoi, and Internal Logic in Categories, in Studies in Logic and the Foundations of Mathematics , 80, Amsterdam: North Holland, 119-134.
  176. Mac Lane, S., 1981, Mathematical Models: a Sketch for the Philosophy of Mathematics, American Mathematical Monthly , 88, 7, 462--472.
  177. Mac Lane, S., 1986, Mathematics, Form and Function , New York: Springer.
  178. Mac Lane, S., 1988, Concepts and Categories in Perspective, in A Century of Mathematics in America , Part I, Providence: AMS, 323--365.
  179. Mac Lane, S., 1989, The Development of Mathematical Ideas by Collision: the Case of Categories and Topos Theory, in Categorical Topology and its Relation to Analysis, Algebra and Combinatorics , Teaneck: World Scientific, 1--9.
  180. MacLane, S., 1950, Dualities for Groups, Bulletin of the American Mathematical Society , 56, 485--516.
  181. Mac Lane, S., 1996, Structure in Mathematics. Mathematical Structuralism., Philosophia Mathematica, 4, 2, 174-183.
  182. Mac Lane, S., 1997, Categories for the Working Mathematician, 2nd edition, New York: Springer-Verlag.
  183. Mac Lane, S., 1997, Categorical Foundations of the Protean Character of Mathematics., Philosophy of Mathematics Today, Dordrecht: Kluwer, 117-122.
  184. Mac Lane, S., and I.~Moerdijk. Sheaves and Geometry in Logic: A First Introduction to Topos Theory , Springer-Verlag, 1992.
  185. Majid, S.: 1995, Foundations of Quantum Group Theory , Cambridge Univ. Press: Cambridge, UK.
  186. Majid, S.: 2002, A Quantum Groups Primer , Cambridge Univ.Press: Cambridge, UK.
  187. 187.0 187.1 Makkai, M. and Par\'e, R., 1989, Accessible Categories: the Foundations of Categorical Model Theory, Contemporary Mathematics 104, Providence: AMS. Cite error: Invalid <ref> tag; name "MM-RG95" defined multiple times with different content
  188. Makkai, M. and Reyes, G., 1977, First-Order Categorical Logic , Springer Lecture Notes in Mathematics 611, New York: Springer.
  189. Makkai, M., 1998, Towards a Categorical Foundation of Mathematics, in Lecture Notes in Logic , 11, Berlin: Springer, 153--190.
  190. Makkai, M., 1999, On Structuralism in Mathematics, in Language, Logic and Concepts , Cambridge: MIT Press, 43--66.
  191. Mallios, A. and I. Raptis: 2003, Finitary, Causal and Quantal Vacuum Einstein Gravity, Int. J. Theor. Phys. 42 : 1479.
  192. Manders, K.L.: 1982, On the space-time ontology of physical theories, Philosophy of Science 49 no. 4: 575--590.
  193. Marquis, J.-P., 1993, Russell's Logicism and Categorical Logicisms, in Russell and Analytic Philosophy , A. D. Irvine \& G. A. Wedekind, (eds.), Toronto, University of Toronto Press, 293--324.
  194. Marquis, J.-P., 1995, Category Theory and the Foundations of Mathematics: Philosophical Excavations., Synthese , 103, 421--447.
  195. Marquis, J.-P., 2000, Three Kinds of Universals in Mathematics?, in Logical Consequence: Rival Approaches and New Studies in Exact Philosophy: Logic, Mathematics and Science , Vol. II, B. Brown and J. Woods, eds., Oxford: Hermes, 191-212, 2000 ,
  196. Marquis, J.-P., 2006, Categories, Sets and the Nature of Mathematical Entities, in: The Age of Alternative Logics. Assessing philosophy of logic and mathematics today , J. van Benthem, G. Heinzmann, Ph. Nabonnand, M. Rebuschi, H.Visser, eds., Springer,181-192.
  197. Martins, J. F and T. Porter: 2004, On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups,
  198. May, J.P. 1999, A Concise Course in Algebraic Topology , The University of Chicago Press: Chicago.
  199. Mc Larty, C., 1991, Axiomatizing a Category of Categories, Journal of Symbolic Logic , 56, no. 4, 1243-1260.
  200. Mc Larty, C., 1992, Elementary Categories, Elementary Toposes, Oxford: Oxford University Press.
  201. Mc Larty, C., 1994, Category Theory in Real Time, Philosophia Mathematica , 2, no. 1, 36-44.
  202. Misra, B., I. Prigogine and M. Courbage.: 1979. Lyapounov variables: Entropy and measurement in quantum mechanics, Proc. Natl. Acad. Sci. USA 78 (10): 4768-4772.
  203. Mitchell, B.: 1965, Theory of Categories , Academic Press:London.
  204. Mitchell, B.: 1964, The full imbedding theorem. Amer. J. Math . 86 : 619-637.
  205. Moerdijk, I. \& Palmgren, E., 2002, Type Theories, Toposes and Constructive Set Theory: Predicative Aspects of AST., Annals of Pure and Applied Logic, 114, no. 1--3, 155-201.
  206. Moerdijk, I., 1998, Sets, Topoi and Intuitionism., Philosophia Mathematica , 6, no. 2, 169-177.
  207. I. Moerdijk : Classifying toposes and foliations, {\it Ann. Inst. Fourier, Grenoble} 41 , 1 (1991) 189-209.
  208. I. Moerdijk : Introduction to the language of stacks and gerbes, arXiv:math.AT/0212266 (2002).
  209. Morita, K. 1962. Category isomorphism and endomorphism rings of modules, Trans. Amer. Math. Soc. , 103 : 451-469.
  210. Morita, K. , 1970. Localization in categories of modules. I., Math. Z. , 114 : 121-144.
  211. M. A. Mostow : The differentiable space structure of Milnor classifying spaces, simplicial complexes, and geometric realizations, J. Diff. Geom. 14 (1979) 255-293.
  212. Oberst, U.: 1969, Duality theory for Grothendieck categories., Bull. Amer. Math. Soc. 75 : 1401-1408.
  213. Oort, F.: 1970. On the definition of an abelian category. Proc. Roy. Neth. Acad. Sci . 70 : 13-02.
  214. Ore, O., 1931, Linear equations on non-commutative fields, Ann. Math. 32 : 463-477.
  215. Penrose, R.: 1994, Shadows of the Mind , Oxford University Press: Oxford.
  216. Plymen, R.J. and P. L. Robinson: 1994, Spinors in Hilbert Space , Cambridge Tracts in Math. 114 , Cambridge Univ. Press, Cambridge.
  217. Pareigis, B., 1970, Categories and Functors, New York: Academic Press.
  218. Pedicchio, M. C. \& Tholen, W., 2004, Categorical Foundations, Cambridge: Cambridge University Press.
  219. Pitts, A. M., 2000, Categorical Logic, in Handbook of Logic in Computer Science , Vol.5, Oxford: Oxford University Press, 39--128.
  220. Plotkin, B., 2000, Algebra, Categories and Databases, in Handbook of Algebra , Vol. 2, Amsterdam: Elsevier, 79--148.
  221. Popescu, N.: 1973, Abelian Categories with Applications to Rings and Modules. New York and London: Academic Press., 2nd edn. 1975. (English translation by I.C. Baianu) .
  222. Pradines, J.: 1966, Th\'eorie de Lie pour les groupoides diff\'erentiable, relation entre propri\'etes locales et globales, C. R. Acad Sci. Paris S\'er. A 268 : 907-910.
  223. Pribram, K. H.: 2000, Proposal for a quantum physical basis for selective learning, in (Farre, ed.) Proceedings ECHO IV 1-4.
  224. Prigogine, I.: 1980, From Being to Becoming : Time and Complexity in the Physical Sciences , W. H. Freeman and Co.: San Francisco.
  225. Raptis, I. and R. R. Zapatrin: 2000, Quantisation of discretized spacetimes and the correspondence principle, Int. Jour. Theor. Phys. 39 : 1.
  226. Raptis, I.: 2003, Algebraic quantisation of causal sets, Int. Jour. Theor. Phys. 39 : 1233.
  227. I. Raptis : Quantum space--time as a quantum causal set, arXiv:gr--qc/0201004.
  228. Reyes, G. and Zolfaghari, H., 1991, Topos-theoretic Approaches to Modality, Category Theory (Como 1990), Lecture Notes in Mathematics , 1488, Berlin: Springer, 359--378.
  229. Reyes, G. andZolfaghari, H., 1996, Bi-Heyting Algebras, Toposes and Modalities, Journal of Philosophical Logic , 25, no. 1, 25--43.
  230. Reyes, G., 1974, From Sheaves to Logic, in Studies in Algebraic Logic , A. Daigneault, ed., Providence: AMS.
  231. Reyes, G., 1991, A Topos-theoretic Approach to Reference and Modality., Notre Dame Journal of Formal Logic , 32, no. 3, 359-391.
  232. M. A. Rieffel : Group C*--algebras as compact quantum metric spaces, Documenta Math. 7 (2002), 605-651.
  233. Roberts, J. E.: 2004, More lectures on algebraic quantum field theory, in A. Connes, et al. Noncommutative Geometry , Springer: Berlin and New York.
  234. Rodabaugh, S. E. \& Klement, E. P., eds., Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic, 20, Dordrecht: Kluwer.
  235. Rota, G. C. : On the foundation of combinatorial theory, I. The theory of M\"obius functions, \emph{Zetschrif f\"ur Wahrscheinlichkeitstheorie} 2 (1968), 340.
  236. Rovelli, C.: 1998, Loop Quantum Gravity, in N. Dadhich, et al. Living Reviews in Relativity (refereed electronic journal)
  237. Schr\"odinger E.: 1945, What is Life? , Cambridge University Press: Cambridge, UK.
  238. Scott, P. J., 2000, Some Aspects of Categories in Computer Science , Handbook of Algebra, Vol. 2, Amsterdam: North Holland, 3--77.
  239. Seely, R. A. G., 1984, Locally Cartesian Closed Categories and Type Theory, Mathematical Proceedings of the Cambridge Mathematical Society , 95, no. 1, 33-48.
  240. Shapiro, S., 2005, Categories, Structures and the Frege-Hilbert Controversy: the Status of Metamathematics, Philosophia Mathematica , 13, 1, 61--77.
  241. Sorkin, R.D.: 1991, Finitary substitute for continuous topology, Int. J. Theor. Phys. 30 No. 7.: 923--947.
  242. Smolin, L.: 2001, Three Roads to Quantum Gravity , Basic Books: New York.
  243. Spanier, E. H.: 1966, Algebraic Topology , McGraw Hill: New York.
  244. Stapp, H.: 1993, Mind, Matter and Quantum Mechanics , Springer Verlag: Berlin--Heidelberg--New York.
  245. Stewart, I. and Golubitsky, M. : 1993. Fearful Symmetry: Is God a Geometer? , Blackwell: Oxford, UK.
  246. Szabo, R. J.: 2003, Quantum field theory on non-commutative spaces, Phys. Rep. 378 : 207--209.
  247. Taylor, P., 1996, Intuitionistic sets and Ordinals, Journal of Symbolic Logic , 61 : 705-744.
  248. Taylor, P., 1999, Practical Foundations of Mathematics , Cambridge: Cambridge University Press.
  249. Unruh, W.G.: 2001, Black holes, dumb holes, and entropy, in C. Callender and N. Hugget (eds. ) Physics Meets Philosophy at the Planck scale , Cambridge University Press, pp. 152-173.
  250. Van der Hoeven, G. and Moerdijk, I., 1984a, Sheaf Models for Choice Sequences, Annals of Pure and Applied Logic, 27, no. 1, 63--107.
  251. V\'arilly, J. C.: 1997, An introduction to noncommutative geometry \\ arXiv:physics/9709045 London.
  252. von Neumann, J.: 1932, Mathematische Grundlagen der Quantenmechanik , Springer: Berlin.
  253. Weinstein, A.: 1996, Groupoids : unifying internal and external symmetry, Notices of the Amer. Math. Soc. 43 : 744--752.
  254. Wess J. and J. Bagger: 1983, Supersymmetry and Supergravity , Princeton University Press: Princeton, NJ.
  255. Weinberg, S.: 1995, The Quantum Theory of Fields vols. 1 to 3, Cambridge Univ. Press.
  256. Wheeler, J. and W. Zurek: 1983, Quantum Theory and Measurement , Princeton University Press: Princeton, NJ.
  257. Whitehead, J. H. C.: 1941, On adding relations to homotopy groups, Annals of Math. 42 (2): 409--428.
  258. Woit, P.: 2006, Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Laws , Jonathan Cape.
  259. Wood, R.J., 2004, Ordered Sets via Adjunctions, In: Categorical Foundations , M. C. Pedicchio \& W. Tholen, eds., Cambridge: Cambridge University Press.