Jump to content

Talk:PlanetPhysics/Axiomatics and Categorical Foundations of Mathematical Physics

Page contents not supported in other languages.
Add topic
From Wikiversity

Original TeX Content from PlanetPhysics Archive

[edit source]
%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: axiomatics and categorical foundations of mathematical physics
%%% Primary Category Code: 00.
%%% Filename: AxiomaticsAndCategoricalFoundationsOfMathematicalPhysics.tex
%%% Version: 1
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% this is the default PlanetPhysics preamble. 
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}

% define commands here

\begin{document}

 \subsection{Axiomatics and Categorical Foundations of Mathematical Physics}
This is a contributed new topic on the mathematical foundations of \htmladdnormallink{theoretical physics}{http://planetphysics.us/encyclopedia/PhysicalMathematics2.html} and \htmladdnormallink{quantum theories}{http://planetphysics.us/encyclopedia/SpaceTimeQuantizationInQuantumGravityTheories.html}.

\begin{enumerate}
\item Axiomatic foundations of quantum field theories
\item \htmladdnormallink{quantum logics}{http://planetphysics.us/encyclopedia/LQG2.html} and logic algebras: Post and $MV$ logics
\item Index of \htmladdnormallink{Quantum Algebraic Topology}{http://planetphysics.us/encyclopedia/TriangulationMethodsForQuantizedSpacetimes2.html} \item \htmladdnormallink{adjointness}{http://planetphysics.us/encyclopedia/DualityAndTriality.html}, equivalence, \htmladdnormallink{isomorphism}{http://planetphysics.us/encyclopedia/IsomorphicObjectsUnderAnIsomorphism.html} at the foundations of \htmladdnormallink{categorical physics}{http://planetphysics.us/encyclopedia/CategoricalPhysics2.html} \item \htmladdnormallink{category theory}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} in quantum physics and \htmladdnormallink{general relativity}{http://planetphysics.us/encyclopedia/SR.html} \item \htmladdnormallink{Categories of quantum logic algebras}{http://planetphysics.us/encyclopedia/AlgebraicCategoryOfLMnLogicAlgebras.html}
\item \htmladdnormallink{functor categories}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} and \htmladdnormallink{super-categories}{http://planetphysics.us/encyclopedia/SuperCategory6.html} \item \htmladdnormallink{index of category theory}{http://planetphysics.us/encyclopedia/IndexOfCategoryTheory.html} \item \htmladdnormallink{indexes of category}{http://planetphysics.us/encyclopedia/IndexOfCategories.html}
\item \htmladdnormallink{classification}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} of $C^*$-algebras and \htmladdnormallink{groupoid}{http://planetphysics.us/encyclopedia/GroupoidHomomorphism2.html} \htmladdnormallink{convolution}{http://planetphysics.us/encyclopedia/AssociatedGroupoidAlgebraRepresentations.html} $C^*$-algebras
\item Quantum topoi and quantum logic extended-toposes
\item \htmladdnormallink{non-Abelian}{http://planetphysics.us/encyclopedia/AbelianCategory3.html} structures and gauge theories
\item \htmladdnormallink{Non-Abelian Quantum Algebraic Topology}{http://planetphysics.us/encyclopedia/NonAbelianQuantumAlgebraicTopology3.html} and \htmladdnormallink{AQFT}{http://planetphysics.us/encyclopedia/SUSY2.html} \item Classical and categorical Galois theories of \htmladdnormallink{quantum groups}{http://planetphysics.us/encyclopedia/QuantumGroup4.html} and \htmladdnormallink{quantum groupoids}{http://planetphysics.us/encyclopedia/WeakHopfAlgebra.html}
\item Theory of quantum \htmladdnormallink{computation}{http://planetphysics.us/encyclopedia/LQG2.html}: quantum logics, \htmladdnormallink{quantum automata}{http://planetphysics.us/encyclopedia/QuantumComputers.html} and quantum computation
\item Measure theory and probability in \htmladdnormallink{quantum statistical mechanics}{http://planetphysics.us/encyclopedia/QuantumStatisticalTheories.html} \item \htmladdnormallink{quantum symmetries}{http://planetphysics.us/encyclopedia/HilbertBundle.html} and quantum groupoid \htmladdnormallink{representation}{http://planetphysics.us/encyclopedia/CategoricalGroupRepresentation.html} theory
\item \htmladdnormallink{noncommutative geometry}{http://planetphysics.us/encyclopedia/NoncommutativeGeometry4.html}, \htmladdnormallink{SUSY}{http://planetphysics.us/encyclopedia/QuarkAntiquarkPair.html} and axiomatic \htmladdnormallink{quantum gravity}{http://planetphysics.us/encyclopedia/LQG2.html} (AQG)
\item \end{enumerate}



Literature references for mathematical physics foundations: axiomatics and categories

\begin{thebibliography}{99}

\bibitem{AS}
Alfsen, E.M. and F. W. Schultz: \emph{Geometry of State Spaces of
Operator Algebras}, Birkh\''auser, Boston--Basel--Berlin (2003).

\bibitem{AMF56}
Atiyah, M.F. 1956. On the Krull-Schmidt theorem with applications to sheaves.
\emph{Bull. Soc. Math. France}, \textbf{84}: 307--317.


\bibitem{AS-BC2k}
Awodey, S. \& Butz, C., 2000, Topological Completeness for Higher Order Logic., Journal of Symbolic Logic, 65, 3, 1168--1182.

\bibitem{AS96}
Awodey, S., 1996, Structure in Mathematics and Logic: A Categorical Perspective,
\emph{Philosophia Mathematica}, 3: 209--237.

\bibitem{AS2k4}
Awodey, S., 2004, An Answer to Hellman's Question: Does Category Theory Provide a Framework for Mathematical Structuralism, \emph{Philosophia Mathematica}, 12: 54--64.

\bibitem{AS2k6}
Awodey, S., 2006, Category Theory, Oxford: Clarendon Press.

\bibitem{BAJ-DJ98a}
Baez, J. \& Dolan, J., 1998a, Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes,
in: \emph{Advances in Mathematics}, 135, 145--206.

\bibitem{BAJ-DJ98B}
Baez, J. \& Dolan, J., 1998b, ``Categorification'', Higher Category Theory, Contemporary Mathematics, 230, Providence: AMS, 1--36.

\bibitem{BAJ-DJ2k1}
Baez, J. \& Dolan, J., 2001, From Finite Sets to Feynman Diagrams,
in \emph{Mathematics Unlimited -- 2001 and Beyond}, Berlin: Springer, 29--50.

\bibitem{BAJ-DJ97}
Baez, J., 1997, An Introduction to n-Categories,
in \emph{Category Theory and Computer Science, Lecture Notes in Computer Science}, 1290, Berlin: Springer-Verlag, 1--33.

\bibitem{ICB4}
Baianu, I.C.: 1971a, Organismic Supercategories and Qualitative Dynamics of Systems. \emph{Ibid.}, \textbf{33} (3), 339--354.

\bibitem{ICB4}
Baianu, I.C.: 1971b, Categories, Functors and Quantum Algebraic
Computations, in P. Suppes (ed.), \emph{Proceed. Fourth Intl. Congress Logic-Mathematics-Philosophy of Science}, September 1--4, 1971, Bucharest.

\bibitem{ICB8}
Baianu, I.C.: 2004a, Quantum Nano--Automata (QNA): Microphysical Measurements with Microphysical QNA Instruments, \emph{CERN Preprint EXT--2004--125}.

\bibitem{BBGG1}
Baianu I. C., Brown R., Georgescu G. and J. F. Glazebrook: 2006b, Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and \L ukasiewicz--Moisil Topos: Transformations of Neuronal, Genetic and Neoplastic Networks., \emph{Axiomathes}, \textbf{16} Nos. 1--2: 65--122.

\bibitem{Bggb4}
Baianu, I.C., R. Brown and J. F. Glazebrook: 2007b, A Non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity, \emph{Axiomathes}, 17: 169-225.

\bibitem{Ba-We2k}
Barr, M and C.~Wells. {\em Toposes, Triples and Theories}. Montreal: McGill University, 2000.

\bibitem{BM-CW99}
Barr, M. \& Wells, C., 1999, Category Theory for Computing Science, Montreal: CRM.

\bibitem{BaM98}
Batanin, M., 1998, Monoidal Globular Categories as a Natural Environment for the Theory of Weak n-Categories,
\emph{Advances in Mathematics}, 136: 39--103.

\bibitem{BJL81}
Bell, J. L., 1981, Category Theory and the Foundations of Mathematics,
\emph{British Journal for the Philosophy of Science}, 32, 349--358.

\bibitem{BJL82}
Bell, J. L., 1982, Categories, Toposes and Sets, \emph{Synthese}, 51, 3, 293--337.

\bibitem{BJL86}
Bell, J. L., 1986, From Absolute to Local Mathematics, \emph{Synthese}, 69, 3, 409--426.

\bibitem{BJL88}
Bell, J. L., 1988, Toposes and Local Set Theories: An Introduction, Oxford: Oxford University Press.

\bibitem{BG-MCLS99}
Birkoff, G. \& Mac Lane, S., 1999, Algebra, 3rd ed., Providence: AMS.

\bibitem{BDK2k3}
Biss, D.K., 2003, Which Functor is the Projective Line?, \emph{American Mathematical Monthly}, 110, 7, 574--592.

\bibitem{BA-SA83}
Blass, A. \& Scedrov, A., 1983, Classifying Topoi and Finite Forcing , Journal of Pure and Applied Algebra, 28, 111--140.

\bibitem{BA84}
Blass, A., 1984, The Interaction Between Category Theory and Set Theory., Mathematical Applications of Category Theory, 30, Providence: AMS, 5--29.

\bibitem{Borceux94}
Borceux, F.: 1994, \emph{Handbook of Categorical Algebra}, vols: 1--3,
in {\em Encyclopedia of Mathematics and its Applications} \textbf{50} to \textbf{52}, Cambridge University Press.

\bibitem{Bourbaki1}
Bourbaki, N. 1961 and 1964: \emph{Alg\`{e}bre commutative.},
in \`{E}l\'{e}ments de Math\'{e}matique., Chs. 1--6., Hermann: Paris.

\bibitem{BrownBook1}
R. Brown: \emph{Topology and Groupoids}, BookSurge LLC (2006).

\bibitem{BJk4}
Brown, R. and G. Janelidze: 2004, Galois theory and a new homotopy double groupoid of a map of spaces, \emph{Applied Categorical Structures} \textbf{12}: 63-80.

\bibitem{BHR2}
Brown, R., Higgins, P. J. and R. Sivera,: 2007a, \emph{Non-Abelian Algebraic Topology}, (vol. 2 in preparation;
vol. 1 is available at Bangor Univ. R. Brown's website for download as PDF.)

\bibitem{BGB2k7b}
Brown, R., Glazebrook, J. F. and I.C. Baianu.: 2007b, A Conceptual, Categorical and Higher Dimensional Algebra Framework of Universal Ontology and the Theory of Levels for Highly Complex Structures and Dynamics., \emph{Axiomathes} (17): 321--379.


\bibitem{Br-Har-Ka-Po2k2}
Brown, R., Hardie, K., Kamps, H. and T. Porter: 2002, The homotopy double groupoid of a Hausdorff space., \emph{Theory and Applications of Categories} \textbf{10}, 71-93.

\bibitem{Br-Hardy76}
Brown, R., and Hardy, J.P.L.:1976, Topological groupoids I: universal constructions, \emph{Math. Nachr.}, 71: 273-286.

\bibitem{Br-Sp76}
Brown, R. and Spencer, C.B.: 1976, Double groupoids and crossed
modules, \emph{Cah. Top. G\'{e}om. Diff.} \textbf{17}, 343-362.

\bibitem{BRTPT2k6}
Brown R, and Porter T (2006) Category theory: an abstract setting for analogy and comparison. In: What is
category theory? {\em Advanced studies in mathematics and logic}. Polimetrica Publisher, Italy, pp.
257-274.

\bibitem{BR-SCB76}
Brown R, Razak Salleh A (1999) Free crossed resolutions of groups and presentations of modules of
identities among relations. {\em LMS J. Comput. Math.}, \textbf{2}: 25--61.

\bibitem{BDA55}
Buchsbaum, D. A.: 1955, Exact categories and duality., Trans. Amer. Math. Soc. \textbf{80}: 1-34.

\bibitem{BI-DA68}
Bucur, I., and Deleanu A. (1968). {\em Introduction to the Theory of Categories and Functors}. J.Wiley and Sons: London

\bibitem{BL2k3}
Bunge, M. and S. Lack: 2003, Van Kampen theorems for toposes, \emph{Adv. in Math.} \textbf{179}, 291-317.

\bibitem{BM74}
Bunge, M., 1974, Topos Theory and Souslin's Hypothesis, Journal of Pure and Applied Algebra, 4, 159-187.

\bibitem{BM84}
Bunge, M., 1984, Toposes in Logic and Logic in Toposes, Topoi, 3, no. 1, 13-22.

\bibitem{BM-LS2k3}
Bunge M, Lack S (2003) Van Kampen theorems for toposes. {\em Adv Math}, \textbf {179}: 291-317.

\bibitem{BJ-ICJ2k1}
Butterfield J., Isham C.J. (2001) Spacetime and the philosophical challenges of quantum gravity. In:
Callender C, Hugget N (eds) Physics meets philosophy at the Planck scale. Cambridge University
Press, pp 33-89.

\bibitem{BJ-ICJ98-2k2}
Butterfield J., Isham C.J. 1998, 1999, 2000-2002, A topos perspective on the Kochen-Specker theorem
I-IV, Int J Theor Phys 37(11):2669-2733; 38(3):827-859; 39(6):1413-1436; 41(4): 613-639.

\bibitem{CH-ES56}
Cartan, H. and Eilenberg, S. 1956. {\em Homological Algebra}, Princeton Univ. Press: Pinceton.

\bibitem{Chaician}
M. Chaician and A. Demichev. 1996. Introduction to Quantum Groups, World Scientific .

\bibitem{CC46}
Chevalley, C. 1946. The theory of Lie groups. Princeton University Press, Princeton NJ

\bibitem{CPM65}
Cohen, P.M. 1965. {\em Universal Algebra}, Harper and Row: New York, london and Tokyo.

\bibitem{CF}
M. Crainic and R. Fernandes.2003. Integrability of Lie brackets, {\em Ann.of Math}. \textbf{157}: 575-620.

\bibitem{CA94}
Connes A 1994. \emph{Noncommutative geometry}. Academic Press: New York.

\bibitem{CR-LL63}
Croisot, R. and Lesieur, L. 1963. \emph{Alg\`ebre noeth\'erienne non-commutative.},
Gauthier-Villard: Paris.

\bibitem{CRL94}
Crole, R.L., 1994, {\em Categories for Types}, Cambridge: Cambridge University Press.

\bibitem{DJ-ALEX60-71}
Dieudonn\'e, J. \& Grothendieck, A., 1960, [1971], \'El\'ements de G\'eom\'etrie Alg\'ebrique, Berlin: Springer-Verlag.

\bibitem{Dirac30}
Dirac, P. A. M., 1930, {\em The Principles of Quantum Mechanics}, Oxford: Clarendon
Press.

\bibitem{Dirac33}
Dirac, P. A. M., 1933, {\em The Lagrangian in Quantum Mechanics}, Physikalische
Zeitschrift der Sowietunion, \textbf{3}: 64-72.

\bibitem{Dirac43}
Dirac, P. A. M.,, 1943, {\em Quantum Electrodynamics}, Communications of the Dublin
Institute for Advanced Studies, \textbf{A1}: 1-36.

\bibitem{Dixmier}
Dixmier, J., 1981, Von Neumann Algebras, Amsterdam: North-Holland Publishing
Company. [First published in French in 1957: Les Algebres d'Operateurs dans
l'Espace Hilbertien, Paris: Gauthier--Villars.]

\bibitem{Durdevich1}
M. Durdevich : Geometry of quantum principal bundles I, Commun.
Math. Phys. \textbf{175} (3) (1996), 457--521.

\bibitem{Durdevich2}
M. Durdevich : Geometry of quantum principal bundles II, Rev.
Math. Phys. \textbf{9} (5) (1997), 531--607.

\bibitem{EC}
Ehresmann, C.: 1965, \emph{Cat\'egories et Structures}, Dunod, Paris.

\bibitem{EC}
Ehresmann, C.: 1966, Trends Toward Unity in Mathematics.,
\emph{Cahiers de Topologie et Geometrie Differentielle}
\textbf{8}: 1-7.

\bibitem{Eh-pseudo}
Ehresmann, C.: 1952, Structures locales et structures infinit\'esimales,
\emph{C.R.A.S.} Paris \textbf{274}: 587-589.

\bibitem{Eh}
Ehresmann, C.: 1959, Cat\'egories topologiques et cat\'egories
diff\'erentiables, \emph{Coll. G\'eom. Diff. Glob.} Bruxelles, pp.137-150.

\bibitem{Eh-quintettes}
Ehresmann, C.:1963, Cat\'egories doubles des quintettes: applications covariantes
, \emph{C.R.A.S. Paris}, \textbf{256}: 1891--1894.

\bibitem{Eh-Oe}
Ehresmann, C.: 1984, \emph{Oeuvres compl\`etes et comment\'ees: Amiens, 1980-84}, edited and commented by Andr\'ee Ehresmann.

\bibitem{EML1}
Eilenberg, S. and S. Mac Lane.: 1942, Natural Isomorphisms in Group Theory., \emph{American Mathematical Society 43}: 757-831.

\bibitem{EL}
Eilenberg, S. and S. Mac Lane: 1945, The General Theory of Natural Equivalences, \emph{Transactions of the American Mathematical Society} \textbf{58}: 231-294.

\bibitem{ES-MCLS42}
Eilenberg, S. \& MacLane, S., 1942, Group Extensions and Homology, Annals of Mathematics, 43, 757--831.

\bibitem{ES-SN52}
Eilenberg, S. \& Steenrod, N., 1952, Foundations of Algebraic Topology, Princeton: Princeton University Press.

\bibitem{ES60}
Eilenberg, S.: 1960. Abstract description of some basic functors., J. Indian Math.Soc., \textbf{24} :221-234.

\bibitem{S.Eilenberg}
S.Eilenberg. Relations between Homology and Homotopy Groups.
Proc.Natl.Acad.Sci.USA (1966),v:10--14.

\bibitem{ED88}
Ellerman, D., 1988, Category Theory and Concrete Universals, Synthese, 28, 409--429.

\bibitem{ETH}
Z. F. Ezawa, G. Tsitsishvilli and K. Hasebe : Noncommutative
geometry, extended $W_{\infty}$ algebra and Grassmannian solitons
in multicomponent Hall systems, arXiv:hep--th/0209198.


\bibitem{Fell}
Fell, J. M. G., 1960. The Dual Spaces of C*-Algebras,
\emph{Transactions of the American Mathematical Society}, 94: 365-403.

\bibitem{Feynman}
Feynman, R. P., 1948, Space--Time Approach to Non--Relativistic Quantum
Mechanics., \emph{Reviews of Modern Physics}, 20: 367--387. [It is reprinted in (Schwinger 1958).]

\bibitem{FP60}
Freyd, P., 1960. Functor Theory (Dissertation). Princeton University, Princeton, New Jersey.

\bibitem{FP63}
Freyd, P., 1963, Relative homological algebra made absolute. , {\em Proc. Natl. Acad. USA}, \textbf{49}:19-20.

\bibitem{FP64}
Freyd, P., 1964, Abelian Categories. An Introduction to the Theory of Functors, New York and London: Harper and Row.

\bibitem{FP65}
Freyd, P., 1965, The Theories of Functors and Models., {\em Theories of Models}, Amsterdam: North Holland, 107--120.

\bibitem{FP66}
Freyd, P., 1966, Algebra-valued Functors in general categories and tensor product in particular., {\em Colloq. Mat}.
{14}: 89--105.

\bibitem{FP72}
Freyd, P., 1972, Aspects of Topoi,{\em Bulletin of the Australian Mathematical Society}, \textbf{7}: 1--76.

\bibitem{FP90}
Freyd, P., 1990, Categories, Allegories, Amsterdam: North Holland.

\bibitem{FP2k2}
Freyd, P., 2002, ``Cartesian Logic'', Theoretical Computer Science, 278, no. 1--2, 3--21.

\bibitem{FP-FH-SA87}
Freyd, P., Friedman, H. \& Scedrov, A., 1987, ``Lindembaum Algebras of Intuitionistic Theories and Free Categories''., Annals of Pure and Applied Logic, 35, 2, 167--172.

\bibitem{Gablot}
Gablot, R. 1971. Sur deux classes de cat\'{e}gories de Grothendieck. Thesis.. Univ. de Lille.

\bibitem{Gabriel1}
Gabriel, P.: 1962, Des cat\'egories ab\'eliennes, \emph{Bull. Soc.
Math. France} \textbf{90}: 323-448.

\bibitem{Gabriel2}
Gabriel, P. and M.Zisman:. 1967: \emph{Category of fractions and homotopy theory}, \emph{Ergebnesse der math.} Springer: Berlin.

\bibitem{GabrielNP}
Gabriel, P. and N. Popescu: 1964, Caract\'{e}risation des cat\'egories ab\'eliennes
avec g\'{e}n\'{e}rateurs et limites inductives. , \emph{CRAS Paris} \textbf{258}: 4188-4191.

\bibitem{GA-RG-SM2k}
Galli, A. \& Reyes, G. \& Sagastume, M., 2000, Completeness Theorems via the Double Dual Functor, Studia Logical, 64, no. 1, 61--81.

\bibitem{GN}
Gelfan'd, I. and Naimark, M., 1943. On the Imbedding of Normed Rings into the
Ring of Operators in Hilbert Space., Recueil Math\'ematique [Matematicheskii
Sbornik] Nouvelle S\'erie, 12 [54]: 197-213. [Reprinted in C*--algebras:
1943--1993, in the series Contemporary Mathematics, 167, Providence, R.I. :
American Mathematical Society, 1994.]

\bibitem{GV70}
Georgescu, G. and C. Vraciu 1970. ``On the Characterization of \L{}ukasiewicz
Algebras.'' \emph{J Algebra}, \textbf{16} (4), 486-495.

\bibitem{GS-ZM2K2}
Ghilardi, S. \& Zawadowski, M., 2002, Sheaves, Games \& Model Completions: A Categorical Approach to Nonclassical Porpositional Logics, Dordrecht: Kluwer.

\bibitem{gs89}
Ghilardi, S., 1989, Presheaf Semantics and Independence Results for some
Non-classical first-order logics, Archive for Mathematical Logic, 29, no. 2, 125--136.

\bibitem{Gob68}
Goblot, R., 1968, Cat\'egories modulaires , {\em C. R. Acad. Sci. Paris, S\'erie A.}, \textbf{267}: 381--383.

\bibitem{Gob71}
Goblot, R., 1971, Sur deux classes de cat\'egories de Grothendieck, {\em Th\`ese.}, Univ. Lille, 1971.

\bibitem{GR79}
Goldblatt, R., 1979, Topoi: The Categorical Analysis of Logic, Studies in logic and the foundations of mathematics, Amsterdam: Elsevier North-Holland Publ. Comp.

\bibitem{Goldie}
Goldie, A. W., 1964, Localization in non-commutative noetherian rings, {\em J.Algebra}, \textbf{1}: 286-297.

\bibitem{Godement}
Godement,R. 1958. Th\'{e}orie des faisceaux. Hermann: Paris.

\bibitem{GRAY65}
Gray, C. W.: 1965. Sheaves with values in a category.,\emph {Topology}, 3: 1-18.

\bibitem{Alex1}
Grothendieck, A.: 1971, Rev\^{e}tements \'Etales et Groupe Fondamental (SGA1),
chapter VI: Cat\'egories fibr\'ees et descente, \emph{Lecture Notes in Math.}
\textbf{224}, Springer--Verlag: Berlin.

\bibitem{Alex2}
Grothendieck, A.: 1957, Sur quelque point d-alg\'{e}bre homologique. , \emph{Tohoku Math. J.}, \textbf{9:} 119-121.

\bibitem{Alex3}
Grothendieck, A. and J. Dieudon\'{e}.: 1960, El\'{e}ments de geometrie alg\'{e}brique., \emph{Publ. Inst. des Hautes Etudes de Science}, \textbf{4}.

\bibitem{ALEXsem}
Grothendieck, A. et al., S\'eminaire de G\'eom\'etrie Alg\'ebrique, Vol. 1--7, Berlin: Springer-Verlag.

\bibitem{TMMFJ84}
Groups Authors: J. Faria Martins, Timothy Porter.,
On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical
$math.QA/0608484 [abs, ps, pdf, other]$.

\bibitem{GL66}
Gruson, L, 1966, Compl\'etion ab\'elienne. {\em Bull. Math.Soc. France}, \textbf{90}: 17-40.

\bibitem{HKK}
K.A. Hardie, K.H. Kamps and R.W. Kieboom. 2000. A homotopy 2-groupoid of a Hausdorff
space, \emph{Applied Cat. Structures} 8: 209--234.

\bibitem{HWS82}
Hatcher, W. S. 1982. {\em The Logical Foundations of Mathematics}, Oxford: Pergamon Press.

\bibitem{Heller58}
Heller, A. :1958, Homological algebra in Abelian categories., \emph{Ann. of Math.}
\textbf{68}: 484-525.

\bibitem{HellerRowe62}
Heller, A. and K. A. Rowe.:1962, On the category of sheaves., \emph{Amer J. Math.}
\textbf{84}: 205-216.

\bibitem{HC-MM-PJ2K}
Hermida, C. \& Makkai, M. \& Power, J., 2000, On Weak Higher-dimensional Categories. I, Journal of Pure and Applied Algebra, 154, no. 1-3, 221--246.

\bibitem{HC-MM-PI2K1}
Hermida, C. \& Makkai, M. \& Power, J., 2001, On Weak Higher-dimensional Categories. II, Journal of Pure and Applied Algebra, 157, no. 2-3, 247--277.

\bibitem{HC-MM-PI2K2}
Hermida, C. \& Makkai, M. \& Power, J., 2002, On Weak Higher-dimensional Categories. III, Journal of Pure and Applied Algebra, 166, no. 1-2, 83--104.

\bibitem{HPJbook}
Higgins, P. J.: 2005, \emph{Categories and groupoids}, Van
Nostrand Mathematical Studies: 32, (1971); \emph{Reprints in
Theory and Applications of Categories}, No. 7: 1-195.

\bibitem{HPJ2k5}
Higgins, Philip J. Thin elements and commutative shells in cubical
$\omega$-categories. Theory Appl. Categ. 14 (2005), No. 4, 60--74
(electronic). msc: 18D05.

\bibitem{HJ-RE-RG90}
Hyland, J.M.E. \& Robinson, E.P. \& Rosolini, G., 1990, The Discrete Objects in the Effective Topos, Proceedings of the London Mathematical Society (3), 60, no. 1, 1--36.

\bibitem{HJME88}
Hyland, J. M..E., 1988, A Small Complete Category, Annals of Pure and Applied Logic, 40, no. 2, 135--165.

\bibitem{HJME91}
Hyland, J. M .E., 1991, First Steps in Synthetic Domain Theory, Category Theory (Como 1990), Lecture Notes in Mathematics, 1488, Berlin: Springer, 131-156.

\bibitem{HJME2K2}
Hyland, J. M.E., 2002, Proof Theory in the Abstract, Annals of Pure and Applied Logic, 114, no. 1--3, 43--78.

\bibitem{E.Hurewicz}
E.Hurewicz. CW Complexes.Trans AMS.1955.

\bibitem{IT-PR-IB70}
Ionescu, Th., R. Parvan and I. Baianu, 1970, {\em C. R. Acad. Sci. Paris, S\'erie A.}, \textbf{269}:
112-116, {\em communiqu\'ee par Louis N\'eel}.

\bibitem{Isham1}
C. J. Isham : A new approach to quantising space--time: I.
quantising on a general category, \emph{Adv. Theor. Math. Phys.}
\textbf{7} (2003), 331--367.

\bibitem{JB99}
Jacobs, B., 1999, Categorical Logic and Type Theory, Amsterdam: North Holland.

\bibitem{JPT77}
Johnstone, P. T., 1977, Topos Theory, New York: Academic Press.

\bibitem{JPT79A}
Johnstone, P. T., 1979a, Conditions Related to De Morgan's Law, Applications of Sheaves, Lecture Notes in Mathematics, 753, Berlin: Springer, 479--491.

\bibitem{JPT52}
Johnstone, P. T., 1982, Stone Spaces, Cambridge:Cambridge University Press.

\bibitem{JPT85}
Johnstone, P. T., 1985, ``How General is a Generalized Space?'', Aspects of Topology, Cambridge: Cambridge University Press, 77--111.

\bibitem{JAMI95}
Joyal, A. \& Moerdijk, I., 1995, Algebraic Set Theory, Cambridge: Cambridge University Press.

\bibitem{kampen1-1933}
Van Kampen, E. H.: 1933, On the Connection Between the Fundamental Groups of some Related Spaces, \emph{Amer. J. Math.} \textbf{55}: 261-267

\bibitem{KDM58}
Kan, D. M., 1958, Adjoint Functors, \emph{Transactions of the American Mathematical Society}, 87, 294-329.

\bibitem{Kleisli62}
Kleisli, H.: 1962, Homotopy theory in Abelian categories.,{\em Can. J. Math.}, \textbf{14}: 139-169.

\bibitem{KJT70}
Knight, J.T., 1970, On epimorphisms of non-commutative rings., {\em Proc. Cambridge Phil. Soc.},
\textbf{25}: 266-271.

\bibitem{KA81}
Kock, A., 1981, Synthetic Differential Geometry, London Mathematical Society Lecture Note Series, 51, Cambridge: Cambridge University Press.

\bibitem{KN1}
S. Kobayashi and K. Nomizu. {\em Foundations of Differential Geometry}
Vol I., Wiley Interscience, New York--London 1963.

\bibitem{Krips}
H. Krips.1999. {\em Measurement in Quantum Theory.}, \emph{The Stanford
Encyclopedia of Philosophy} ({Winter 1999 Edition}), Edward N. Zalta (ed.)

\bibitem{LTY}
Lam, T. Y., 1966, ``The category of noetherian modules.'', {\em Proc. Natl. Acad. Sci. USA}, \textbf{55}: 1038-104.

\bibitem{LJ-SPJ81}
Lambek, J. \& Scott, P. J., 1981, Intuitionistic Type Theory and Foundations, Journal of Philosophical Logic, 10, 1, 101--115.

\bibitem{LJ68}
Lambek, J., 1968, Deductive Systems and Categories I. Syntactic Calculus and Residuated Categories, Mathematical Systems Theory, 2, 287--318.

\bibitem{LJ69}
Lambek, J., 1969, Deductive Systems and Categories II. Standard Constructions and Closed Categories, Category Theory, Homology Theory and their Applications I, Berlin: Springer, 76--122.

\bibitem{LJ72}
Lambek, J., 1972, Deductive Systems and Categories III. Cartesian Closed Categories, Intuitionistic Propositional Calculus, and Combinatory Logic, Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics, 274, Berlin: Springer, 57--82.

\bibitem{LT89A}
Lambek, J., 1989A, On Some Connections Between Logic and Category Theory, Studia Logica, 48, 3, 269--278.

\bibitem{LJ89B}
Lambek, J., 1989B, On the Sheaf of Possible Worlds, Categorical Topology and its relation to Analysis, Algebra and Combinatorics, Teaneck: World Scientific Publishing, 36--53.

\bibitem{LJ94a}
Lambek, J., 1994a, Some Aspects of Categorical Logic, in \emph{Logic, Methodology and Philosophy of Science IX, Studies in Logic and the Foundations of Mathematics} 134, Amsterdam: North Holland, 69--89.

\bibitem{LJ94b}
Lambek, J., 1994b, What is a Deductive System?, What is a Logical System?, Studies in Logic and Computation, 4, Oxford: Oxford University Press, 141--159.

\bibitem{LJ2k4}
Lambek, J., 2004, What is the world of Mathematics? Provinces of Logic Determined, Annals of Pure and Applied Logic, 126(1-3), 149--158.

\bibitem{LaSc}
Lambek, J. and P.~J.~Scott. {\em Introduction to higher order categorical logic}. Cambridge University Press, 1986.

\bibitem{Lance}
E. C. Lance : Hilbert C*--Modules. \emph{London Math. Soc. Lect.
Notes} \textbf{210}, \emph{Cambridge Univ. Press.} 1995.

\bibitem{LE-MJP2k5}
Landry, E. \& Marquis, J.-P., 2005, Categories in Context: Historical, Foundational and philosophical, Philosophia Mathematica, 13, 1--43.

\bibitem{LE99}
Landry, E., 2001, Logicism, Structuralism and Objectivity, Topoi, 20, 1, 79--95.

\bibitem{LandNP98}
Landsman, N. P.: 1998, \emph{Mathematical Topics between Classical and Quantum Mechanics}, Springer Verlag: New York.

\bibitem{Land}
N. P. Landsman : Mathematical topics between classical and quantum mechanics.
\emph{Springer Verlag}, New York, 1998.

\bibitem{Land1}
N. P. Landsman : Compact quantum groupoids, $arXiv:math-ph/9912006$

\bibitem{LPRM94}
La Palme Reyes, M., et. al., 1994, The non-Boolean Logic of Natural Language Negation, Philosophia Mathematica, 2, no. 1, 45--68.

\bibitem{LPRM99}
La Palme Reyes, M., et. al., 1999, Count Nouns, Mass Nouns, and their Transformations: a Unified Category-theoretic Semantics, in \emph{Language, Logic and Concepts}, Cambridge: MIT Press, 427--452.

\bibitem{LFW64}
Lawvere, F. W., 1964, An Elementary Theory of the Category of Sets,
\emph{Proceedings of the National Academy of Sciences U.S.A.}, 52, 1506--1511.

\bibitem{LFW65}
Lawvere, F. W., 1965, Algebraic Theories, Algebraic Categories, and Algebraic Functors,
in \emph{Theory of Models}, Amsterdam: North Holland, 413--418.

\bibitem{LFW66}
Lawvere, F. W., 1966, The Category of Categories as a Foundation for Mathematics, in \emph{Proceedings of the Conference on Categorical Algebra, La Jolla}, New York: Springer-Verlag, 1--21.

\bibitem{LFW69a}
Lawvere, F. W., 1969a, Diagonal Arguments and Cartesian Closed Categories, in \emph{Category Theory, Homology Theory, and their Applications II}, Berlin: Springer, 134--145.

\bibitem{LFW69b}
Lawvere, F. W., 1969b, Adjointness in Foundations, \emph{Dialectica}, 23, 281--295.

\bibitem{LFW70}
Lawvere, F. W., 1970, Equality in Hyper-doctrines and Comprehension Schema as an Adjoint Functor,
\emph{Applications of Categorical Algebra}, Providence: AMS, 1-14.

\bibitem{LT271}
Lawvere, F. W., 1971, Quantifiers and Sheaves, Actes du Congr\'Es International des Math\'Ematiciens, Tome 1, Paris: Gauthier-Villars, 329--334.

\bibitem{LFW72}
Lawvere, F. W., 1972, ``Introduction'', in \emph{Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics}, 274, Springer-Verlag, 1--12.

\bibitem{LFW75}
Lawvere, F. W., 1975, Continuously Variable Sets: Algebraic Geometry = Geometric Logic, in
\emph{Proceedings of the Logic Colloquium Bristol} 1973, Amsterdam: North Holland, 135--153.

\bibitem{LFW76}
Lawvere, F. W., 1976, Variable Quantities and Variable Structures in Topoi, in
\emph{Algebra, Topology, and Category Theory, New York: Academic Press}, 101--131.

\bibitem{LFW63}
Lawvere, F. W.: 1963, Functorial Semantics of Algebraic Theories,
\emph{Proc. Natl. Acad. Sci. USA, Mathematics}, \textbf{50}: 869-872.

\bibitem{LFW69}
Lawvere, F. W.: 1969, \emph{Closed Cartesian Categories}., Lecture held as a guest of the
Romanian Academy of Sciences, Bucharest.

\bibitem{LFW92}
Lawvere, F. W., 1992. Categories of Space and of Quantity, The Space of Mathematics, Foundations of Communication and Cognition.

\bibitem{LFW2k2}
Lawvere, F. W., 2002, Categorical Algebra for Continuum Micro-Physics, Journal of Pure and Applied Algebra, 175, no. 1--3, 267--287.


\bibitem{LFWk3}
Lawvere, F. W., 2003, Foundations and Applications: Axiomatization and Education. New Programs and Open Problems in the Foundation of Mathematics, \emph{Bulletin of Symbolic Logic}, 9, 2, 213--224.

\bibitem{LT2k2}
Leinster, T., 2002, A Survey of Definitions of n-categories, in \emph{Theory and Applications of Categories}, (electronic), \textbf{10}, 1--70.

\bibitem{LiM-PV97}
Li, M. and P. Vitanyi: 1997, \emph{An introduction to Kolmogorov Complexity and its Applications}, Springer Verlag: New York.

\bibitem{LS60}
Lubkin, S., 1960. Imbedding of abelian categories., {\em Trans. Amer. Math. Soc.}, \textbf{97}: 410-417.

\bibitem{Mack1}
K. C. H. Mackenzie : Lie Groupoids and Lie Algebroids in Differential Geometry, LMS Lect. Notes \textbf{124}, Cambridge
University Press, 1987

\bibitem{MCLSS48}
MacLane, S.: 1948. Groups, categories, and duality., {\em Proc. Natl. Acad. Sci.U.S.A},
\textbf{34}: 263-267.

\bibitem{MCLSS69}
MacLane, S., 1969, Foundations for Categories and Sets, in {\em Category Theory, Homology Theory and their Applications II}, Berlin: Springer, 146--164.

\bibitem{MCLS71}MacLane, S., 1971, Categorical algebra and Set-Theoretic Foundations, in {\em Axiomatic Set Theory}, Providence: AMS, 231--240.

\bibitem{MCLS75}
Mac Lane, S., 1975, Sets, Topoi, and Internal Logic in Categories, in \emph{Studies in Logic and the Foundations of Mathematics}, 80, Amsterdam: North Holland, 119-134.

\bibitem{MCLS81}
Mac Lane, S., 1981, Mathematical Models: a Sketch for the Philosophy of Mathematics, \emph{American Mathematical Monthly}, 88, 7, 462--472.

\bibitem{MCLS86}
Mac Lane, S., 1986, \emph{Mathematics, Form and Function}, New York: Springer.

\bibitem{MCLS88}
Mac Lane, S., 1988, Concepts and Categories in Perspective, in \emph{A Century of Mathematics in America}, Part I, Providence: AMS, 323--365.

\bibitem{MCLS89}
Mac Lane, S., 1989, The Development of Mathematical Ideas by Collision: the Case of Categories and Topos Theory, in
\emph{Categorical Topology and its Relation to Analysis, Algebra and Combinatorics}, Teaneck: World Scientific, 1--9.

\bibitem{MLS50}
MacLane, S., 1950, Dualities for Groups, \emph{Bulletin of the American Mathematical Society}, 56, 485--516.

\bibitem{MCLS96}
Mac Lane, S., 1996, Structure in Mathematics. Mathematical Structuralism., Philosophia Mathematica, 4, 2, 174-183.

\bibitem{MCLS98}
Mac Lane, S., 1997, Categories for the Working Mathematician, 2nd edition, New York: Springer-Verlag.

\bibitem{MCLS97}
Mac Lane, S., 1997, Categorical Foundations of the Protean Character of Mathematics., Philosophy of Mathematics Today, Dordrecht: Kluwer, 117-122.

\bibitem{MaMo}
Mac Lane, S., and I.~Moerdijk. {\em Sheaves and Geometry in Logic: A First Introduction to Topos Theory}, Springer-Verlag, 1992.

\bibitem{Majid1}
Majid, S.: 1995, \emph{Foundations of Quantum Group Theory}, Cambridge Univ. Press: Cambridge, UK.

\bibitem{Majid2}
Majid, S.: 2002, \emph{A Quantum Groups Primer}, Cambridge Univ.Press: Cambridge, UK.

\bibitem{MM-RG95}
Makkai, M. and Par\'e, R., 1989, Accessible Categories: the Foundations of Categorical Model Theory, Contemporary Mathematics 104, Providence: AMS.

\bibitem{MM-RG77}
Makkai, M. and Reyes, G., 1977, \emph{First-Order Categorical Logic}, Springer Lecture Notes in Mathematics 611, New York: Springer.

\bibitem{MM98}
Makkai, M., 1998, Towards a Categorical Foundation of Mathematics, in \emph{Lecture Notes in Logic}, 11, Berlin: Springer, 153--190.

\bibitem{MM99}
Makkai, M., 1999, On Structuralism in Mathematics, in \emph{Language, Logic and Concepts},
Cambridge: MIT Press, 43--66.

\bibitem{MM-RG95}
Makkei, M. \& Reyes, G., 1995, Completeness Results for Intuitionistic and Modal Logic in a Categorical Setting,
\emph{Annals of Pure and Applied Logic}, 72, 1, 25--101.

\bibitem{Mallios1}
Mallios, A. and I. Raptis: 2003, Finitary, Causal and Quantal Vacuum Einstein Gravity, \emph{Int. J. Theor. Phys.} \textbf{42}:
1479.

\bibitem{Manders}
Manders, K.L.: 1982, On the space-time ontology of physical theories, \emph{Philosophy of Science} \textbf{49} no. 4: 575--590.

\bibitem{MJP93}
Marquis, J.-P., 1993, Russell's Logicism and Categorical Logicisms, in \emph{Russell and Analytic Philosophy}, A. D. Irvine \& G. A. Wedekind, (eds.), Toronto, University of Toronto Press, 293--324.

\bibitem{MJP95}
Marquis, J.-P., 1995, Category Theory and the Foundations of Mathematics: Philosophical Excavations., \emph{Synthese}, 103, 421--447.

\bibitem{MJP2k}
Marquis, J.-P., 2000, Three Kinds of Universals in Mathematics?, in {\em Logical Consequence: Rival Approaches and New Studies in Exact Philosophy: Logic, Mathematics and Science}, Vol. II, B. Brown and J. Woods, eds., Oxford: Hermes, 191-212, 2000 ,

\bibitem{MJP2k6}
Marquis, J.-P., 2006, Categories, Sets and the Nature of Mathematical Entities, in: \emph{The Age of Alternative Logics. Assessing philosophy of logic and mathematics today}, J. van Benthem, G. Heinzmann, Ph. Nabonnand, M. Rebuschi, H.Visser, eds., Springer,181-192.

\bibitem{Martins}
Martins, J. F and T. Porter: 2004, On Yetter's Invariant and an Extension of the Dijkgraaf-Witten Invariant to Categorical Groups, $math.QA/0608484$

\bibitem{MJP1999}
May, J.P. 1999, \emph{A Concise Course in Algebraic Topology}, The University of Chicago Press: Chicago.

\bibitem{MLC91}
Mc Larty, C., 1991, Axiomatizing a Category of Categories, \emph{Journal of Symbolic Logic}, 56, no. 4, 1243-1260.

\bibitem{MLC92}
Mc Larty, C., 1992, Elementary Categories, Elementary Toposes, Oxford: Oxford University Press.

\bibitem{MLC94}
Mc Larty, C., 1994, Category Theory in Real Time, \emph{Philosophia Mathematica}, 2, no. 1, 36-44.

\bibitem{MPC79}
Misra, B., I. Prigogine and M. Courbage.: 1979. Lyapounov variables: Entropy and measurement in quantum mechanics,
\emph{Proc. Natl. Acad. Sci. USA} \textbf{78} (10): 4768-4772.

\bibitem{Mitchell1}
Mitchell, B.: 1965, \emph{Theory of Categories}, Academic Press:London.

\bibitem{Mitchell2}
Mitchell, B.: 1964, The full imbedding theorem. \emph{Amer. J. Math}. \textbf{86}: 619-637.

\bibitem{MI-P2k2}
Moerdijk, I. \& Palmgren, E., 2002, Type Theories, Toposes and Constructive Set Theory: Predicative Aspects of AST., Annals of Pure and Applied Logic, 114, no. 1--3, 155-201.

\bibitem{MO98}
Moerdijk, I., 1998, Sets, Topoi and Intuitionism., \emph{Philosophia Mathematica}, 6, no. 2, 169-177.

\bibitem{Moer1}
I. Moerdijk : Classifying toposes and foliations, {\it Ann. Inst. Fourier, Grenoble} \textbf{41}, 1 (1991) 189-209.

\bibitem{Moer2}
I. Moerdijk : Introduction to the language of stacks and gerbes, arXiv:math.AT/0212266 (2002).

\bibitem{MK62}
Morita, K. 1962. Category isomorphism and endomorphism rings of modules,
{\em Trans. Amer. Math. Soc.}, \textbf{103}: 451-469.

\bibitem{MK70}
Morita, K. , 1970. Localization in categories of modules. I., {\em Math. Z.},
\textbf{114}: 121-144.

\bibitem{Mostow}
M. A. Mostow : The differentiable space structure of Milnor classifying spaces, simplicial complexes,
and geometric realizations, \emph{J. Diff. Geom.} \textbf{14} (1979) 255-293.

\bibitem{OB69}
Oberst, U.: 1969, Duality theory for Grothendieck categories., \emph{Bull. Amer. Math. Soc.} \textbf{75}: 1401-1408.

\bibitem{ORT70}
Oort, F.: 1970. On the definition of an abelian category. \emph{Proc. Roy. Neth. Acad. Sci}. \textbf{70}: 13-02.

\bibitem{OO31}
Ore, O., 1931, Linear equations on non-commutative fields, {\em Ann. Math.}
\textbf{32}: 463-477.

\bibitem{Penrose}
Penrose, R.: 1994, \emph{Shadows of the Mind}, Oxford University Press: Oxford.

\bibitem{PLR}
Plymen, R.J. and P. L. Robinson: 1994, \emph{Spinors in Hilbert Space}, Cambridge Tracts in Math.
\textbf{114}, Cambridge Univ. Press, Cambridge.

\bibitem{PB70}
Pareigis, B., 1970, Categories and Functors, New York: Academic Press.

\bibitem{PMC 2k4}
Pedicchio, M. C. \& Tholen, W., 2004, Categorical Foundations, Cambridge: Cambridge University Press.

\bibitem{PAM2k}
Pitts, A. M., 2000, Categorical Logic, in \textbf{Handbook of Logic in Computer Science}, Vol.5, Oxford: Oxford Unversity Press, 39--128.

\bibitem{PB2k}
Plotkin, B., 2000, Algebra, Categories and Databases, in \emph{Handbook of Algebra}, Vol. 2, Amsterdam: Elsevier, 79--148.

\bibitem{Popescu}
Popescu, N.: 1973, \emph{Abelian Categories with Applications to Rings and Modules.} New York and London: Academic Press., 2nd edn. 1975. \emph{(English translation by I.C. Baianu)}.

\bibitem{Pradines1966}
Pradines, J.: 1966, Th\'eorie de Lie pour les groupoides diff\'erentiable, relation entre propri\'etes locales et globales, \emph{C. R. Acad Sci. Paris S\'er. A} \textbf{268}: 907-910.

\bibitem{Prib2k}
Pribram, K. H.: 2000, Proposal for a quantum physical basis for selective learning, in (Farre, ed.)
\emph{Proceedings ECHO IV} 1-4.

\bibitem{Prigogine}
Prigogine, I.: 1980, \emph{From Being to Becoming : Time and Complexity in the Physical Sciences},
W. H. Freeman and Co.: San Francisco.

\bibitem{RZ2k}
Raptis, I. and R. R. Zapatrin: 2000, Quantisation of discretized spacetimes and the correspondence principle, \emph{Int. Jour. Theor. Phys.} \textbf{39}: 1.

\bibitem{Raptis1-2k3}
Raptis, I.: 2003, Algebraic quantisation of causal sets, \emph{Int. Jour. Theor. Phys.} \textbf{39}: 1233.

\bibitem{Raptis2}
I. Raptis : Quantum space--time as a quantum causal set, arXiv:gr--qc/0201004.

\bibitem{RGZH91}
Reyes, G. and Zolfaghari, H., 1991, Topos-theoretic Approaches to Modality,
\emph{Category Theory (Como 1990), Lecture Notes in Mathematics}, 1488, Berlin: Springer, 359--378.

\bibitem{RGZH96}
Reyes, G. andZolfaghari, H., 1996, Bi-Heyting Algebras, Toposes and Modalities, \emph{Journal of Philosophical Logic}, 25, no. 1, 25--43.

\bibitem{RG74}
Reyes, G., 1974, From Sheaves to Logic, in \emph{Studies in Algebraic Logic}, A. Daigneault, ed., Providence: AMS.

\bibitem{RG91}
Reyes, G., 1991, A Topos-theoretic Approach to Reference and Modality., \emph{Notre Dame Journal of Formal Logic}, 32, no. 3, 359-391.

\bibitem{Rieffel}
M. A. Rieffel : Group C*--algebras as compact quantum metric spaces, \emph{Documenta Math.} \textbf{7} (2002), 605-651.

\bibitem{Roberts}
Roberts, J. E.: 2004, More lectures on algebraic quantum field theory, in A. Connes, et al. \emph{Noncommutative Geometry}, Springer: Berlin and New York.

\bibitem{RSE-KEP94}
Rodabaugh, S. E. \& Klement, E. P., eds., Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic, 20, Dordrecht: Kluwer.

\bibitem{Rota}
Rota, G. C. : On the foundation of combinatorial theory, I. The theory of M\"obius functions, \emph{Zetschrif f\"ur
Wahrscheinlichkeitstheorie} \textbf{2} (1968), 340.

\bibitem{Rovelli1}
Rovelli, C.: 1998, Loop Quantum Gravity, in N. Dadhich, et al. \emph{Living Reviews in Relativity} (refereed electronic journal)

\bibitem{Schrod2}
Schr\"odinger E.: 1945, \emph{ What is Life?}, Cambridge University Press:
Cambridge, UK.

\bibitem{SPJ2k}
Scott, P. J., 2000, {\em Some Aspects of Categories in Computer Science}, Handbook of Algebra, Vol. 2, Amsterdam: North Holland, 3--77.

\bibitem{SRAG84}
Seely, R. A. G., 1984, Locally Cartesian Closed Categories and Type Theory, \emph{Mathematical Proceedings of the Cambridge Mathematical Society}, 95, no. 1, 33-48.

\bibitem{SHS2k5}
Shapiro, S., 2005, Categories, Structures and the Frege-Hilbert Controversy: the Status of Metamathematics,
\emph{Philosophia Mathematica}, 13, 1, 61--77.

\bibitem{Sorkin}
Sorkin, R.D.: 1991, Finitary substitute for continuous topology,
\emph{Int. J. Theor. Phys.} \textbf{30} No. 7.: 923--947.

\bibitem{Smolin}
Smolin, L.: 2001, \emph{Three Roads to Quantum Gravity}, Basic Books: New York.

\bibitem{Spanier}
Spanier, E. H.: 1966, \emph{Algebraic Topology}, McGraw Hill: New York.

\bibitem{Stapp}
Stapp, H.: 1993, \emph{Mind, Matter and Quantum Mechanics}, Springer Verlag: Berlin--Heidelberg--New York.

\bibitem{Stewart- Golub}
Stewart, I. and Golubitsky, M. : 1993. \emph{Fearful Symmetry: Is God a Geometer?}, Blackwell: Oxford, UK.

\bibitem{Szabo}
Szabo, R. J.: 2003, Quantum field theory on non-commutative spaces,
\emph{Phys. Rep.} \textbf{378}: 207--209.

\bibitem{TP96}
Taylor, P., 1996, Intuitionistic sets and Ordinals, \emph{Journal of Symbolic Logic}, 61 : 705-744.

\bibitem{TP99}
Taylor, P., 1999, \emph{Practical Foundations of Mathematics}, Cambridge: Cambridge University Press.

\bibitem{Unruh}
Unruh, W.G.: 2001, Black holes, dumb holes, and entropy, in C. Callender and N. Hugget (eds. ) \emph{Physics Meets Philosophy at the Planck scale}, Cambridge University Press, pp. 152-173.

\bibitem{VdHG-MI84a}
Van der Hoeven, G. and Moerdijk, I., 1984a, Sheaf Models for Choice Sequences, Annals of Pure and Applied Logic, 27, no. 1, 63--107.

\bibitem{Varilly}
V\'arilly, J. C.: 1997, An introduction to noncommutative geometry \\ arXiv:physics/9709045
London.

\bibitem{vonNeumann}
von Neumann, J.: 1932, \emph{Mathematische Grundlagen der Quantenmechanik}, Springer: Berlin.

\bibitem{Weinstein96}
Weinstein, A.: 1996, Groupoids : unifying internal and external symmetry, \emph{Notices of the Amer. Math. Soc.} \textbf{43}: 744--752.

\bibitem{WB83}
Wess J. and J. Bagger: 1983, \emph{Supersymmetry and Supergravity}, Princeton University Press: Princeton, NJ.

\bibitem{Weinberg95}
Weinberg, S.: 1995, \emph{The Quantum Theory of Fields} vols. 1 to 3, Cambridge Univ. Press.

\bibitem{Wheeler83}
Wheeler, J. and W. Zurek: 1983, \emph{Quantum Theory and Measurement}, Princeton University Press: Princeton, NJ.

\bibitem{Whitehead1941}
Whitehead, J. H. C.: 1941, On adding relations to homotopy groups, \emph{Annals of Math.} \textbf{42} (2): 409--428.

\bibitem{Woit}
Woit, P.: 2006, \emph{Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Laws}, Jonathan Cape.

\bibitem{WRJ2k4}
Wood, R.J., 2004, Ordered Sets via Adjunctions, In: \emph{Categorical Foundations}, M. C. Pedicchio \& W. Tholen, eds., Cambridge: Cambridge University Press.

\end{thebibliography} 

\end{document}