# Physics equations/18-Electric charge and field/Q:lineChargesCALCULUS

These questions have not been tested.

## A

A line charge on the y axis extends from y = -3 to y = 2. What is the y component of the electric field at the point (3, 7)?
Answer: ${\frac {1}{4\pi \epsilon _{0}}}\int _{\mathcal {A}}^{\mathcal {B}}{\frac {{\mathcal {C}}\;\lambda ds}{\left[{\mathcal {D}}^{2}+{\mathcal {E}}^{2}\right]^{\mathcal {F}}\;}}$ , where:

1

 ${\mathcal {A}}=$ 2

 ${\mathcal {B}}=$ 3

 ${\mathcal {C}}=$ 4

 ${\mathcal {D}}=$ 5

 ${\mathcal {E}}=$ 6

 ${\mathcal {F}}=$ ## B

A line charge on the y axis extends from y = 2 to y = 7. What is the y component of the electric field at the point (2, 9)?
Answer: ${\frac {1}{4\pi \epsilon _{0}}}\int _{\mathcal {A}}^{\mathcal {B}}{\frac {{\mathcal {C}}\;\lambda ds}{\left[{\mathcal {D}}^{2}+{\mathcal {E}}^{2}\right]^{\mathcal {F}}\;}}$ , where:

1

 ${\mathcal {A}}=$ 2

 ${\mathcal {B}}=$ 3

 ${\mathcal {C}}=$ 4

 ${\mathcal {D}}=$ 5

 ${\mathcal {E}}=$ 6

 ${\mathcal {F}}=$ ## C

A line charge on the x axis extends from x = 4 to x = 8. What is the y component of the electric field at the point (8, 4)?
Answer: ${\frac {1}{4\pi \epsilon _{0}}}\int _{\mathcal {A}}^{\mathcal {B}}{\frac {{\mathcal {C}}\;\lambda ds}{\left[{\mathcal {D}}^{2}+{\mathcal {E}}^{2}\right]^{\mathcal {F}}\;}}$ , where:

1

 ${\mathcal {A}}=$ 2

 ${\mathcal {B}}=$ 3

 ${\mathcal {C}}=$ 4

 ${\mathcal {D}}=$ 5

 ${\mathcal {E}}=$ 6

 ${\mathcal {F}}=$ ## D

A line charge on the y axis extends from y = 4 to y = 6. What is the y component of the electric field at the point (5, 1)?
Answer: ${\frac {1}{4\pi \epsilon _{0}}}\int _{\mathcal {A}}^{\mathcal {B}}{\frac {{\mathcal {C}}\;\lambda ds}{\left[{\mathcal {D}}^{2}+{\mathcal {E}}^{2}\right]^{\mathcal {F}}\;}}$ , where:

1

 ${\mathcal {A}}=$ 2

 ${\mathcal {B}}=$ 3

 ${\mathcal {C}}=$ 4

 ${\mathcal {D}}=$ 5

 ${\mathcal {E}}=$ 6

 ${\mathcal {F}}=$ ## E

A line charge on the x axis extends from x = 3 to x = 7. What is the x component of the electric field at the point (7, 8)?
Answer: ${\frac {1}{4\pi \epsilon _{0}}}\int _{\mathcal {A}}^{\mathcal {B}}{\frac {{\mathcal {C}}\;\lambda ds}{\left[{\mathcal {D}}^{2}+{\mathcal {E}}^{2}\right]^{\mathcal {F}}\;}}$ , where:

1

 ${\mathcal {A}}=$ 2

 ${\mathcal {B}}=$ 3

 ${\mathcal {C}}=$ 4

 ${\mathcal {D}}=$ 5

 ${\mathcal {E}}=$ 6

 ${\mathcal {F}}=$ 