Exercises
Determine, for the sets
M
=
{
a
,
b
,
c
,
d
,
e
}
,
N
=
{
a
,
c
,
e
}
,
P
=
{
b
}
,
R
=
{
b
,
d
,
e
,
f
}
,
{\displaystyle M=\{a,b,c,d,e\},\,N=\{a,c,e\},\,P=\{b\},\,R=\{b,d,e,f\},}
the following sets.
M
∩
N
{\displaystyle {}M\cap N}
,
M
∩
N
∩
P
∩
R
{\displaystyle {}M\cap N\cap P\cap R}
,
M
∪
R
{\displaystyle {}M\cup R}
,
(
N
∪
P
)
∩
R
{\displaystyle {}{\left(N\cup P\right)}\cap R}
,
N
∖
R
{\displaystyle {}N\setminus R}
,
(
M
∪
P
)
∖
(
R
∖
N
)
{\displaystyle {}{\left(M\cup P\right)}\setminus {\left(R\setminus N\right)}}
,
(
(
P
∪
R
)
∩
N
)
∩
R
{\displaystyle {}{\left({\left(P\cup R\right)}\cap N\right)}\cap R}
,
(
R
∖
P
)
∩
(
M
∖
N
)
{\displaystyle {}{\left(R\setminus P\right)}\cap {\left(M\setminus N\right)}}
.
Let
L
A
{\displaystyle {}LA}
denote the set of capital letters in the Latin alphabet,
G
A
{\displaystyle {}GA}
the set of capital letters in the Greek alphabet, and
R
A
{\displaystyle {}RA}
the set of capital letters in the Russian alphabet. Determine the following sets.
G
A
∖
R
A
{\displaystyle {}GA\setminus RA}
.
(
L
A
∩
G
A
)
∪
(
L
A
∩
R
A
)
{\displaystyle {}{\left(LA\cap GA\right)}\cup {\left(LA\cap RA\right)}}
.
R
A
∖
(
G
A
∪
R
A
)
{\displaystyle {}RA\setminus {\left(GA\cup RA\right)}}
.
R
A
∖
(
G
A
∪
L
A
)
{\displaystyle {}RA\setminus {\left(GA\cup LA\right)}}
.
(
R
A
∖
G
A
)
∩
(
(
L
A
∪
G
A
)
∖
(
G
A
∩
R
A
)
)
{\displaystyle {}{\left(RA\setminus GA\right)}\cap {\left({\left(LA\cup GA\right)}\setminus {\left(GA\cap RA\right)}\right)}}
.
Let
A
,
B
{\displaystyle {}A,\,B}
and
C
{\displaystyle {}C}
denote sets. Prove the identity
A
∖
(
B
∩
C
)
=
(
A
∖
B
)
∪
(
A
∖
C
)
.
{\displaystyle {}A\setminus {\left(B\cap C\right)}={\left(A\setminus B\right)}\cup {\left(A\setminus C\right)}\,.}
Let
A
,
B
{\displaystyle {}A,B}
and
C
{\displaystyle {}C}
denote sets. Prove the following identities.
A
∪
∅
=
A
,
{\displaystyle {}A\cup \emptyset =A\,,}
A
∩
∅
=
∅
,
{\displaystyle {}A\cap \emptyset =\emptyset \,,}
A
∩
B
=
B
∩
A
,
{\displaystyle {}A\cap B=B\cap A\,,}
A
∪
B
=
B
∪
A
,
{\displaystyle {}A\cup B=B\cup A\,,}
A
∩
(
B
∩
C
)
=
(
A
∩
B
)
∩
C
,
{\displaystyle {}A\cap (B\cap C)=(A\cap B)\cap C\,,}
A
∪
(
B
∪
C
)
=
(
A
∪
B
)
∪
C
,
{\displaystyle {}A\cup (B\cup C)=(A\cup B)\cup C\,,}
A
∩
(
B
∪
C
)
=
(
A
∩
B
)
∪
(
A
∩
C
)
,
{\displaystyle {}A\cap (B\cup C)=(A\cap B)\cup (A\cap C)\,,}
A
∪
(
B
∩
C
)
=
(
A
∪
B
)
∩
(
A
∪
C
)
,
{\displaystyle {}A\cup (B\cap C)=(A\cup B)\cap (A\cup C)\,,}
A
∖
(
B
∪
C
)
=
(
A
∖
B
)
∩
(
A
∖
C
)
.
{\displaystyle {}A\setminus (B\cup C)=(A\setminus B)\cap (A\setminus C)\,.}
Prove the following
(set-theoretical versions of)
syllogisms of Aristotle. Let
A
,
B
,
C
{\displaystyle {}A,B,C}
denote sets.
Modus Barbara:
B
⊆
A
{\displaystyle {}B\subseteq A}
and
C
⊆
B
{\displaystyle {}C\subseteq B}
imply
C
⊆
A
{\displaystyle {}C\subseteq A}
.
Modus Celarent:
B
∩
A
=
∅
{\displaystyle {}B\cap A=\emptyset }
and
C
⊆
B
{\displaystyle {}C\subseteq B}
imply
C
∩
A
=
∅
{\displaystyle {}C\cap A=\emptyset }
.
Modus Darii:
B
⊆
A
{\displaystyle {}B\subseteq A}
and
C
∩
B
≠
∅
{\displaystyle {}C\cap B\neq \emptyset }
imply
C
∩
A
≠
∅
{\displaystyle {}C\cap A\neq \emptyset }
.
Modus Ferio:
B
∩
A
=
∅
{\displaystyle {}B\cap A=\emptyset }
and
C
∩
B
≠
∅
{\displaystyle {}C\cap B\neq \emptyset }
imply
C
⊈
A
{\displaystyle {}C\not \subseteq A}
.
Modus Baroco:
B
⊆
A
{\displaystyle {}B\subseteq A}
and
B
⊈
C
{\displaystyle {}B\not \subseteq C}
imply
A
⊈
C
{\displaystyle {}A\not \subseteq C}
.
Does the "subtraction rule“ hold for the union of sets, i.e., can we infer from
A
∪
C
=
B
∪
C
{\displaystyle {}A\cup C=B\cup C}
that
A
=
B
{\displaystyle {}A=B}
holds?
Let
A
,
B
,
C
{\displaystyle {}A,B,C}
denote sets. Show that the following statements are equivalent.
A
⊆
B
∪
C
{\displaystyle {}A\subseteq B\cup C}
.
A
∖
B
⊆
C
{\displaystyle {}A\setminus B\subseteq C}
A
∖
C
⊆
B
{\displaystyle {}A\setminus C\subseteq B}
.
Sketch the
product set
N
×
N
{\displaystyle {}\mathbb {N} \times \mathbb {N} }
as a subset of
R
×
R
{\displaystyle {}\mathbb {R} \times \mathbb {R} }
.
Describe for any choice of two of the following geometric sets its product set
(including the case where a set is taken twice).
A line segment
I
{\displaystyle {}I}
.
A circle
(circumference)
K
{\displaystyle {}K}
.
A disk
D
{\displaystyle {}D}
.
A parabola
P
{\displaystyle {}P}
.
Which of these product sets can be realized within space, which can't?
Sketch the following subsets in
R
2
{\displaystyle {}\mathbb {R} ^{2}}
.
{
(
x
,
y
)
∣
x
=
7
or
y
=
3
}
{\displaystyle {}{\left\{(x,y)\mid x=7{\text{ or }}y=3\right\}}}
,
{
(
x
,
y
)
∣
7
x
≥
3
y
and
4
x
≤
y
}
{\displaystyle {}{\left\{(x,y)\mid 7x\geq 3y{\text{ and }}4x\leq y\right\}}}
,
{
(
x
,
y
)
∣
x
2
+
y
2
=
0
}
{\displaystyle {}{\left\{(x,y)\mid x^{2}+y^{2}=0\right\}}}
,
{
(
x
,
y
)
∣
x
2
+
y
2
=
1
}
{\displaystyle {}{\left\{(x,y)\mid x^{2}+y^{2}=1\right\}}}
.
Sketch the set
M
=
{
(
x
,
y
)
∈
R
2
∣
4
x
−
7
y
=
3
}
{\displaystyle {}M={\left\{(x,y)\in \mathbb {R} ^{2}\mid 4x-7y=3\right\}}}
and the set
N
=
{
(
x
,
y
)
∈
R
2
∣
3
x
+
2
y
=
5
}
{\displaystyle {}N={\left\{(x,y)\in \mathbb {R} ^{2}\mid 3x+2y=5\right\}}}
.
Determine the intersection
M
∩
N
{\displaystyle {}M\cap N}
geometrically and computationally.
We recommend illustrating the formulated set identities of the following exercises.
Let
M
{\displaystyle {}M}
and
N
{\displaystyle {}N}
denote sets, and let
A
⊆
M
{\displaystyle {}A\subseteq M}
and
B
⊆
N
{\displaystyle {}B\subseteq N}
be subsets. Show the identity
(
A
×
N
)
∩
(
M
×
B
)
=
A
×
B
.
{\displaystyle {}{\left(A\times N\right)}\cap {\left(M\times B\right)}=A\times B\,.}
Let
M
{\displaystyle {}M}
and
N
{\displaystyle {}N}
denote sets, and let
A
1
,
A
2
⊆
M
{\displaystyle {}A_{1},A_{2}\subseteq M}
and
B
1
,
B
2
⊆
N
{\displaystyle {}B_{1},B_{2}\subseteq N}
be subsets. Show the identity
(
A
1
×
B
1
)
∩
(
A
2
×
B
2
)
=
(
A
1
∩
A
2
)
×
(
B
1
∩
B
2
)
.
{\displaystyle {}{\left(A_{1}\times B_{1}\right)}\cap {\left(A_{2}\times B_{2}\right)}={\left(A_{1}\cap A_{2}\right)}\times {\left(B_{1}\cap B_{2}\right)}\,.}
Let
P
{\displaystyle {}P}
be a set of people and
V
{\displaystyle {}V}
the set of the first names and
N
{\displaystyle {}N}
the set of the surnames of these people. Define natural mappings from
P
{\displaystyle {}P}
to
V
{\displaystyle {}V}
, to
N
{\displaystyle {}N}
and to
V
×
N
{\displaystyle {}V\times N}
and discuss them using the relevant notions for mappings.
Dr. Peter Klamser
Determine for the following diagrams which empirical mappings they describe. What is in each case the source, the target, which units are used? Does each image represent one or more mappings? Do they really represent mappings? What information is conveyed beyond the mapping? Is there some kind of mathematical modelling for these empirical mappings?
Give examples of
mappings
φ
,
ψ
:
N
⟶
N
{\displaystyle \varphi ,\psi \colon \mathbb {N} \longrightarrow \mathbb {N} }
such that
φ
{\displaystyle {}\varphi }
is
injective
but not
surjective ,
and
ψ
{\displaystyle {}\psi }
is surjective but not injective.
Show that there exists a
bijection
between
N
{\displaystyle {}\mathbb {N} }
and
Z
{\displaystyle {}\mathbb {Z} }
.
Establish, for each
n
∈
N
{\displaystyle {}n\in \mathbb {N} }
,
whether the function
R
⟶
R
,
x
⟼
x
n
,
{\displaystyle \mathbb {R} \longrightarrow \mathbb {R} ,x\longmapsto x^{n},}
is
injective
and/or
surjective .
Which
graphs
of a function
f
:
R
→
R
{\displaystyle {}f\colon \mathbb {R} \rightarrow \mathbb {R} }
do you know from school?
How can we recognize by looking at the
graph
of a mapping
f
:
R
⟶
R
{\displaystyle f\colon \mathbb {R} \longrightarrow \mathbb {R} }
whether
f
{\displaystyle {}f}
is
injective
or
surjective ?
Which
bijective
functions
f
:
R
→
R
{\displaystyle {}f\colon \mathbb {R} \rightarrow \mathbb {R} }
(or between subsets of
R
{\displaystyle {}\mathbb {R} }
)
do you know from school? What is the name of the
inverse function ?
Let
L
{\displaystyle {}L}
and
M
{\displaystyle {}M}
denote sets. Show that the mapping
τ
:
L
×
M
⟶
M
×
L
,
(
x
,
y
)
⟼
(
y
,
x
)
,
{\displaystyle \tau \colon L\times M\longrightarrow M\times L,(x,y)\longmapsto (y,x),}
is a
bijective mapping
between the product sets
L
×
M
{\displaystyle {}L\times M}
and
M
×
L
{\displaystyle {}M\times L}
.
Let
L
{\displaystyle {}L}
and
M
{\displaystyle {}M}
be sets and let
F
:
L
⟶
M
{\displaystyle F\colon L\longrightarrow M}
be a function. Let
G
:
M
⟶
L
{\displaystyle G\colon M\longrightarrow L}
be another function such that
F
∘
G
=
Id
M
{\displaystyle {}F\circ G=\operatorname {Id} _{M}\,}
and
G
∘
F
=
Id
L
{\displaystyle {}G\circ F=\operatorname {Id} _{L}\,}
.
Show that
G
{\displaystyle {}G}
is the
inverse
of
F
{\displaystyle {}F}
.
We consider the sets
L
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
}
,
M
=
{
a
,
b
,
c
,
d
,
e
,
f
,
g
,
h
,
i
}
and
N
=
{
R
,
S
,
T
,
U
,
V
,
W
,
X
,
Y
,
Z
}
{\displaystyle L=\{1,2,3,4,5,6,7,8\},\,M=\{a,b,c,d,e,f,g,h,i\}{\text{ and }}N=\{R,S,T,U,V,W,X,Y,Z\}}
and the mappings
φ
:
L
→
M
{\displaystyle {}\varphi \colon L\rightarrow M}
and
ψ
:
M
→
N
{\displaystyle {}\psi \colon M\rightarrow N}
which are given by the value tables
x
{\displaystyle {}x}
1
{\displaystyle {}1}
2
{\displaystyle {}2}
3
{\displaystyle {}3}
4
{\displaystyle {}4}
5
{\displaystyle {}5}
6
{\displaystyle {}6}
7
{\displaystyle {}7}
8
{\displaystyle {}8}
φ
(
x
)
{\displaystyle {}\varphi (x)}
c
{\displaystyle {}c}
i
{\displaystyle {}i}
a
{\displaystyle {}a}
g
{\displaystyle {}g}
d
{\displaystyle {}d}
e
{\displaystyle {}e}
h
{\displaystyle {}h}
b
{\displaystyle {}b}
and
y
{\displaystyle {}y}
a
{\displaystyle {}a}
b
{\displaystyle {}b}
c
{\displaystyle {}c}
d
{\displaystyle {}d}
e
{\displaystyle {}e}
f
{\displaystyle {}f}
g
{\displaystyle {}g}
h
{\displaystyle {}h}
i
{\displaystyle {}i}
ψ
(
y
)
{\displaystyle {}\psi (y)}
X
{\displaystyle {}X}
Z
{\displaystyle {}Z}
Y
{\displaystyle {}Y}
S
{\displaystyle {}S}
Z
{\displaystyle {}Z}
S
{\displaystyle {}S}
T
{\displaystyle {}T}
W
{\displaystyle {}W}
U
{\displaystyle {}U}
respectively.
Determine a value table for
ψ
∘
φ
{\displaystyle {}\psi \circ \varphi }
.
Are the mappings
φ
{\displaystyle {}\varphi }
,
ψ
{\displaystyle {}\psi }
,
ψ
∘
φ
{\displaystyle {}\psi \circ \varphi }
injective?
Are the mappings
φ
{\displaystyle {}\varphi }
,
ψ
{\displaystyle {}\psi }
,
ψ
∘
φ
{\displaystyle {}\psi \circ \varphi }
surjective?
Determine the
composite functions
φ
∘
ψ
{\displaystyle {}\varphi \circ \psi }
and
ψ
∘
φ
{\displaystyle {}\psi \circ \varphi }
for the
functions
φ
,
ψ
:
R
→
R
{\displaystyle {}\varphi ,\psi \colon \mathbb {R} \rightarrow \mathbb {R} }
,
defined by
φ
(
x
)
=
x
4
+
3
x
2
−
2
x
+
5
and
ψ
(
x
)
=
2
x
3
−
x
2
+
6
x
−
1.
{\displaystyle \varphi (x)=x^{4}+3x^{2}-2x+5\,\,{\text{ and }}\,\,\psi (x)=2x^{3}-x^{2}+6x-1.}
Can a constant mapping be bijective?
Is the composition of a constant mapping with an arbitrary mapping
(the constant map first)
constant?
Is the composition of an arbitrary mapping with a constant mapping
(the constant map last)
constant?
Let
L
,
M
,
N
{\displaystyle {}L,M,N}
and
P
{\displaystyle {}P}
be sets and let
F
:
L
⟶
M
,
x
⟼
F
(
x
)
,
{\displaystyle F\colon L\longrightarrow M,x\longmapsto F(x),}
G
:
M
⟶
N
,
y
⟼
G
(
y
)
,
{\displaystyle G\colon M\longrightarrow N,y\longmapsto G(y),}
and
H
:
N
⟶
P
,
z
⟼
H
(
z
)
,
{\displaystyle H\colon N\longrightarrow P,z\longmapsto H(z),}
be
functions .
Show that
H
∘
(
G
∘
F
)
=
(
H
∘
G
)
∘
F
.
{\displaystyle {}H\circ (G\circ F)=(H\circ G)\circ F\,.}
Let
L
,
M
{\displaystyle {}L,\,M}
and
N
{\displaystyle {}N}
denote sets and let
F
:
L
⟶
M
,
x
⟼
F
(
x
)
,
{\displaystyle F\colon L\longrightarrow M,x\longmapsto F(x),}
and
G
:
M
⟶
N
,
y
⟼
G
(
y
)
,
{\displaystyle G\colon M\longrightarrow N,y\longmapsto G(y),}
be
mappings
with the
composition
G
∘
F
:
L
⟶
N
.
{\displaystyle G\circ F\colon L\longrightarrow N.}
Show the following properties.
If
F
{\displaystyle {}F}
and
G
{\displaystyle {}G}
are
injective ,
then also
G
∘
F
{\displaystyle {}G\circ F}
is injective.
If
F
{\displaystyle {}F}
and
G
{\displaystyle {}G}
are
surjective ,
then also
G
∘
F
{\displaystyle {}G\circ F}
is surjective.
If
F
{\displaystyle {}F}
and
G
{\displaystyle {}G}
are
bijective ,
then also
G
∘
F
{\displaystyle {}G\circ F}
is bijective.
Let
L
,
M
,
N
{\displaystyle {}L,M,N}
be sets and let
f
:
L
⟶
M
and
g
:
M
⟶
N
{\displaystyle f:L\longrightarrow M{\text{ and }}g:M\longrightarrow N}
be
mappings
with their
composition
g
∘
f
:
L
⟶
N
,
x
⟼
g
(
f
(
x
)
)
.
{\displaystyle g\circ f\colon L\longrightarrow N,x\longmapsto g(f(x)).}
Show that if
g
∘
f
{\displaystyle {}g\circ f}
is
injective ,
then also
f
{\displaystyle {}f}
is injective.
Hand-in-exercises
Let
A
{\displaystyle {}A}
and
B
{\displaystyle {}B}
be sets. Show that the following facts are equivalent.
A
⊆
B
{\displaystyle {}A\subseteq B}
,
A
∩
B
=
A
{\displaystyle {}A\cap B=A}
A
∪
B
=
B
{\displaystyle {}A\cup B=B}
,
A
∖
B
=
∅
{\displaystyle {}A\setminus B=\emptyset }
,
There exists a set
C
{\displaystyle {}C}
such that
B
=
A
∪
C
{\displaystyle {}B=A\cup C}
,
There exists a set
D
{\displaystyle {}D}
such that
A
=
B
∩
D
{\displaystyle {}A=B\cap D}
.
Sketch the following subsets in
R
2
{\displaystyle {}\mathbb {R} ^{2}}
.
{
(
x
,
y
)
∣
2
x
=
5
and
y
≥
3
}
{\displaystyle {}{\left\{(x,y)\mid 2x=5{\text{ and }}y\geq 3\right\}}}
,
{
(
x
,
y
)
∣
−
3
x
≥
2
y
and
4
x
≤
−
5
y
}
{\displaystyle {}{\left\{(x,y)\mid -3x\geq 2y{\text{ and }}4x\leq -5y\right\}}}
,
{
(
x
,
y
)
∣
y
2
−
y
+
1
≤
4
}
{\displaystyle {}{\left\{(x,y)\mid y^{2}-y+1\leq 4\right\}}}
,
{
(
x
,
y
)
∣
x
y
=
0
}
{\displaystyle {}{\left\{(x,y)\mid xy=0\right\}}}
.
Let
L
,
M
,
N
{\displaystyle {}L,M,N}
be sets, and let
f
:
L
⟶
M
and
g
:
M
⟶
N
{\displaystyle f:L\longrightarrow M{\text{ and }}g:M\longrightarrow N}
be
mappings
with their
composite mapping
g
∘
f
:
L
⟶
N
,
x
⟼
g
(
f
(
x
)
)
.
{\displaystyle g\circ f\colon L\longrightarrow N,x\longmapsto g(f(x)).}
Show that if
g
∘
f
{\displaystyle {}g\circ f}
is
surjective ,
then also
g
{\displaystyle {}g}
is surjective.
We consider a computer with only two memory units, each can represent a natural number. At the start of every program
(a sequence of commands),
the initial entries are
(
0
,
0
)
{\displaystyle {}(0,0)}
. The computer can empty a memory unit, it can increase a memory unit by
1
{\displaystyle {}1}
, it can jump to another command
(unconditional Goto)
and it can compare the two entries of the two memory units. Moreover, it can jump to another command in case the comparing condition is fulfilled
(conditional Goto).
There is a printing command which prints the entries at the moment. Write a computer-program such that every pair
(
n
,
m
)
∈
N
2
{\displaystyle {}(n,m)\in \mathbb {N} ^{2}}
is printed exactly once.
Determine the
compositions
φ
∘
ψ
{\displaystyle {}\varphi \circ \psi }
and
ψ
∘
φ
{\displaystyle {}\psi \circ \varphi }
for the
mappings
φ
,
ψ
:
R
→
R
{\displaystyle {}\varphi ,\psi \colon \mathbb {R} \rightarrow \mathbb {R} }
given by
φ
(
x
)
=
x
3
+
2
x
+
1
and
ψ
(
x
)
=
x
2
−
5.
{\displaystyle \varphi (x)=x^{3}+2x+1\,\,{\text{ and }}\,\,\psi (x)=x^{2}-5.}
Consider the set
M
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
}
{\displaystyle {}M=\{1,2,3,4,5,6,7,8\}}
,
and the
mapping
φ
:
M
⟶
M
,
x
⟼
φ
(
x
)
,
{\displaystyle \varphi \colon M\longrightarrow M,x\longmapsto \varphi (x),}
defined by the following table
x
{\displaystyle {}x}
1
{\displaystyle {}1}
2
{\displaystyle {}2}
3
{\displaystyle {}3}
4
{\displaystyle {}4}
5
{\displaystyle {}5}
6
{\displaystyle {}6}
7
{\displaystyle {}7}
8
{\displaystyle {}8}
φ
(
x
)
{\displaystyle {}\varphi (x)}
2
{\displaystyle {}2}
5
{\displaystyle {}5}
6
{\displaystyle {}6}
1
{\displaystyle {}1}
4
{\displaystyle {}4}
3
{\displaystyle {}3}
7
{\displaystyle {}7}
7
{\displaystyle {}7}
Compute
φ
1003
{\displaystyle {}\varphi ^{1003}}
, that is, the
1003
{\displaystyle {}1003}
-rd composition (or iteration) of
φ
{\displaystyle {}\varphi }
with itself.