Exercise for the break
Show that, for a
K
{\displaystyle {}K}
-vector space
V
{\displaystyle {}V}
with
dual space
V
∗
{\displaystyle {}{V}^{*}}
, the evaluation mapping
V
×
V
∗
⟶
K
,
(
v
,
f
)
⟼
f
(
v
)
,
{\displaystyle V\times {V}^{*}\longrightarrow K,(v,f)\longmapsto f(v),}
is bilinear.
Exercises
Compute the determinant of the matrix
(
1
+
3
i
5
−
i
3
−
2
i
4
+
i
)
.
{\displaystyle {\begin{pmatrix}1+3{\mathrm {i} }&5-{\mathrm {i} }\\3-2{\mathrm {i} }&4+{\mathrm {i} }\end{pmatrix}}.}
Compute the
determinant
of the matrix
(
1
3
5
2
1
3
8
7
4
)
.
{\displaystyle {\begin{pmatrix}1&3&5\\2&1&3\\8&7&4\end{pmatrix}}.}
We consider the
matrix
(
2
−
1
−
1
−
1
2
−
1
−
1
−
1
2
)
.
{\displaystyle {\begin{pmatrix}2&-1&-1\\-1&2&-1\\-1&-1&2\end{pmatrix}}.}
Compute the
determinant
of
M
{\displaystyle {}M}
.
Determine the determinant for every matrix that arises when we remove from
M
{\displaystyle {}M}
a row and a column.
Prove by induction that the determinant of an upper triangular matrix is equal to the product of the diagonal elements.
Prove by induction that the
determinant
of a lower triangular matrix is equal to the product of the diagonal elements.
Let
K
{\displaystyle {}K}
be a
field ,
let
V
{\displaystyle {}V}
and
W
{\displaystyle {}W}
be
K
{\displaystyle {}K}
-vector spaces ,
and let
φ
:
V
⟶
W
{\displaystyle \varphi \colon V\longrightarrow W}
denote a
K
{\displaystyle {}K}
-linear mapping . Show that
φ
{\displaystyle {}\varphi }
is
multilinear
and
alternating .
Let
K
{\displaystyle {}K}
be a
field . Show that the multiplication
K
×
K
=
K
2
⟶
K
,
(
a
,
b
)
⟼
a
⋅
b
,
{\displaystyle K\times K=K^{2}\longrightarrow K,(a,b)\longmapsto a\cdot b,}
is
multilinear .
Is it also
alternating ?
Let
K
{\displaystyle {}K}
be a
field , and let
n
∈
N
{\displaystyle {}n\in \mathbb {N} }
.
Show that the
mapping
K
n
×
K
n
⟶
K
,
(
(
u
1
⋮
u
n
)
,
(
v
1
⋮
v
n
)
)
⟼
(
u
1
,
…
,
u
n
)
∘
(
v
1
⋮
v
n
)
,
{\displaystyle K^{n}\times K^{n}\longrightarrow K,({\begin{pmatrix}u_{1}\\\vdots \\u_{n}\end{pmatrix}},{\begin{pmatrix}v_{1}\\\vdots \\v_{n}\end{pmatrix}})\longmapsto (u_{1},\ldots ,u_{n})\circ {\begin{pmatrix}v_{1}\\\vdots \\v_{n}\end{pmatrix}},}
is
multilinear .
Let
K
{\displaystyle {}K}
be a
field ,
and let
I
{\displaystyle {}I}
and
J
{\displaystyle {}J}
denote finite index sets. Show that the mapping
Map
(
I
,
K
)
×
Map
(
J
,
K
)
⟶
Map
(
I
×
J
,
K
)
,
(
f
,
g
)
⟼
f
⊗
g
,
{\displaystyle \operatorname {Map} \,{\left(I,K\right)}\times \operatorname {Map} \,{\left(J,K\right)}\longrightarrow \operatorname {Map} \,{\left(I\times J,K\right)},(f,g)\longmapsto f\otimes g,}
given by
(
f
⊗
g
)
(
i
,
j
)
:=
f
(
i
)
⋅
g
(
j
)
,
{\displaystyle {}(f\otimes g)(i,j):=f(i)\cdot g(j)\,,}
is
multilinear .
Check the multilinearity and the property to be alternating, directly for the
determinant
of a
2
×
2
{\displaystyle {}2\times 2}
-matrix.
Check the multilinearity and the property to be alternating, directly for the determinant of a
3
×
3
{\displaystyle {}3\times 3}
-matrix.
Show that, for every
elementary matrix
E
{\displaystyle {}E}
, the relation
det
E
=
det
E
tr
{\displaystyle {}\det E=\det {E^{\text{tr}}}\,}
holds.
Use the image to convince yourself that, given two vectors
(
x
1
,
y
1
)
{\displaystyle {}(x_{1},y_{1})}
and
(
x
2
,
y
2
)
{\displaystyle {}(x_{2},y_{2})}
,
the determinant of the
2
×
2
{\displaystyle {}2\times 2}
-matrix defined by these vectors is equal
(up to sign)
to the area of the plane parallelogram spanned by the vectors.
Let
M
{\displaystyle {}M}
be a
2
×
2
{\displaystyle {}2\times 2}
-matrix .
Show that
trace
(
M
)
=
1
+
det
M
−
det
(
E
2
−
M
)
{\displaystyle {}\operatorname {trace} {\left(M\right)}=1+\det M-\det {\left(E_{2}-M\right)}\,}
holds.
Let
z
∈
C
{\displaystyle {}z\in \mathbb {C} }
and let
C
⟶
C
,
w
⟼
z
w
,
{\displaystyle \mathbb {C} \longrightarrow \mathbb {C} ,w\longmapsto zw,}
be the associated multiplication. Compute the determinant of this map, considering it as a real-linear map
R
2
→
R
2
{\displaystyle {}\mathbb {R} ^{2}\rightarrow \mathbb {R} ^{2}}
.
Let
K
{\displaystyle {}K}
be a
field ,
and let
V
1
,
…
,
V
n
{\displaystyle {}V_{1},\ldots ,V_{n}}
and
W
{\displaystyle {}W}
be
vector spaces
over
K
{\displaystyle {}K}
. Let
Φ
:
V
1
×
⋯
×
V
n
⟶
W
{\displaystyle \Phi \colon V_{1}\times \cdots \times V_{n}\longrightarrow W}
be a
multilinear mapping ,
and let
v
1
j
,
…
,
v
m
j
j
∈
V
j
{\displaystyle {}v_{1j},\ldots ,v_{m_{j}j}\in V_{j}}
and
a
i
j
∈
K
{\displaystyle {}a_{ij}\in K}
.
Show that
Φ
(
∑
i
=
1
m
1
a
i
1
v
i
1
,
…
,
∑
i
=
1
m
n
a
i
n
v
i
n
)
=
∑
(
i
1
,
…
,
i
n
)
∈
{
1
,
…
,
m
1
}
×
⋯
×
{
1
,
…
,
m
n
}
a
i
1
1
⋯
a
i
n
n
Φ
(
v
i
1
1
,
…
,
v
i
n
n
)
{\displaystyle \Phi {\left(\sum _{i=1}^{m_{1}}a_{i1}v_{i1},\ldots ,\sum _{i=1}^{m_{n}}a_{in}v_{in}\right)}=\sum _{(i_{1},\ldots ,i_{n})\in \{1,\ldots ,m_{1}\}\times \cdots \times \{1,\ldots ,m_{n}\}}a_{i_{1}1}\cdots a_{i_{n}n}\Phi {\left(v_{i_{1}1},\ldots ,v_{i_{n}n}\right)}\,}
holds.
Let
K
{\displaystyle {}K}
be a
field , and let
V
1
,
…
,
V
n
{\displaystyle {}V_{1},\ldots ,V_{n}}
and
W
{\displaystyle {}W}
denote
vector spaces
over
K
{\displaystyle {}K}
. Let
v
i
j
{\displaystyle {}v_{i_{j}}}
,
i
j
∈
I
j
{\displaystyle {}i_{j}\in I_{j}}
,
be
generating systems
of
V
j
{\displaystyle {}V_{j}}
,
j
=
1
,
…
,
n
{\displaystyle {}j=1,\ldots ,n}
.
Show that a
multilinear mapping
△
:
V
1
×
⋯
×
V
n
⟶
W
{\displaystyle \triangle \colon V_{1}\times \cdots \times V_{n}\longrightarrow W}
is determined by
△
(
v
i
1
,
…
,
v
i
n
)
.
{\displaystyle \triangle (v_{i_{1}},\ldots ,v_{i_{n}}).}
Let
K
{\displaystyle {}K}
be a
field ,
and let
V
{\displaystyle {}V}
denote a
K
{\displaystyle {}K}
-vector space . Let
△
:
V
×
V
⟶
K
{\displaystyle \triangle \colon V\times V\longrightarrow K}
be a
multilinear
and
alternating
mapping .
Let
u
,
v
,
w
∈
V
{\displaystyle {}u,v,w\in V}
.
Simplify
△
(
u
+
2
v
v
+
3
w
)
.
{\displaystyle \triangle {\begin{pmatrix}u+2v\\v+3w\end{pmatrix}}.}
Let
K
{\displaystyle {}K}
be a
field . Show that the
mapping
Mat
2
(
K
)
⟶
K
,
(
a
b
c
d
)
⟼
a
d
+
c
b
,
{\displaystyle \operatorname {Mat} _{2}(K)\longrightarrow K,{\begin{pmatrix}a&b\\c&d\end{pmatrix}}\longmapsto ad+cb,}
is
multilinear ,
but not
alternating .
Let
K
{\displaystyle {}K}
be a
field . Is the
mapping
Mat
2
(
K
)
⟶
K
,
(
a
b
c
d
)
⟼
a
c
−
b
d
,
{\displaystyle \operatorname {Mat} _{2}(K)\longrightarrow K,{\begin{pmatrix}a&b\\c&d\end{pmatrix}}\longmapsto ac-bd,}
multilinear
in den rows? In the columns?
Let
K
{\displaystyle {}K}
be a field and
n
∈
N
+
{\displaystyle {}n\in \mathbb {N} _{+}}
.
Show that the
determinant
Mat
n
(
K
)
=
(
K
n
)
n
⟶
K
,
M
⟼
det
M
,
{\displaystyle \operatorname {Mat} _{n}(K)=(K^{n})^{n}\longrightarrow K,M\longmapsto \det M,}
fulfills
(for arbitrary
k
∈
{
1
,
…
,
n
}
{\displaystyle {}k\in \{1,\ldots ,n\}}
and arbitrary
n
−
1
{\displaystyle {}n-1}
vectors
v
1
,
…
,
v
k
−
1
,
v
k
+
1
,
…
,
v
n
∈
K
n
{\displaystyle {}v_{1},\ldots ,v_{k-1},v_{k+1},\ldots ,v_{n}\in K^{n}}
,
for
u
∈
K
n
{\displaystyle {}u\in K^{n}}
and for
s
∈
K
{\displaystyle {}s\in K}
)
the equality
det
(
v
1
⋮
v
k
−
1
s
u
v
k
+
1
⋮
v
n
)
=
s
det
(
v
1
⋮
v
k
−
1
u
v
k
+
1
⋮
v
n
)
.
{\displaystyle {}\det {\begin{pmatrix}v_{1}\\\vdots \\v_{k-1}\\su\\v_{k+1}\\\vdots \\v_{n}\end{pmatrix}}=s\det {\begin{pmatrix}v_{1}\\\vdots \\v_{k-1}\\u\\v_{k+1}\\\vdots \\v_{n}\end{pmatrix}}\,.}
Let
M
{\displaystyle {}M}
be the following square matrix
M
=
(
A
B
0
D
)
,
{\displaystyle {}M={\begin{pmatrix}A&B\\0&D\end{pmatrix}}\,,}
where
A
{\displaystyle {}A}
and
D
{\displaystyle {}D}
are square matrices. Prove that
det
M
=
det
A
⋅
det
D
{\displaystyle {}\det M=\det A\cdot \det D}
.
Let
M
{\displaystyle {}M}
be a square matrix of the form
M
=
(
A
B
C
D
)
{\displaystyle {}M={\begin{pmatrix}A&B\\C&D\end{pmatrix}}\,}
with square matrices
A
,
B
,
C
{\displaystyle {}A,B,C}
and
D
{\displaystyle {}D}
.
Show by an example that the equality
det
M
=
det
A
⋅
det
D
−
det
B
⋅
det
C
{\displaystyle {}\det M=\det A\cdot \det D-\det B\cdot \det C\,}
does not hold in general.
Let
K
{\displaystyle {}K}
be a
field ,
and let
V
{\displaystyle {}V}
and
W
{\displaystyle {}W}
denote a
K
{\displaystyle {}K}
-vector space . Determine whether the
mapping
Hom
K
(
V
,
W
)
×
V
⟶
W
,
(
φ
,
v
)
⟼
φ
(
v
)
,
{\displaystyle \operatorname {Hom} _{K}{\left(V,W\right)}\times V\longrightarrow W,(\varphi ,v)\longmapsto \varphi (v),}
is
multilinear .
Let
K
{\displaystyle {}K}
be a
field , and let
V
1
,
…
,
V
n
{\displaystyle {}V_{1},\ldots ,V_{n}}
and
W
{\displaystyle {}W}
denote
vector spaces
over
K
{\displaystyle {}K}
. Let
Φ
:
V
1
×
⋯
×
V
n
⟶
W
{\displaystyle \Phi \colon V_{1}\times \cdots \times V_{n}\longrightarrow W}
be a
multilinear mapping .
Show that the set
{
(
v
1
,
…
,
v
n
)
∈
V
1
×
⋯
×
V
n
∣
Φ
(
v
1
,
…
,
v
n
)
=
0
}
{\displaystyle {\left\{\left(v_{1},\,\ldots ,\,v_{n}\right)\in V_{1}\times \cdots \times V_{n}\mid \Phi \left(v_{1},\,\ldots ,\,v_{n}\right)=0\right\}}}
is, in general, not a
linear subspace
of
V
1
×
⋯
×
V
n
{\displaystyle {}V_{1}\times \cdots \times V_{n}}
.
Let
K
{\displaystyle {}K}
be a
field , and let
V
1
,
…
,
V
n
{\displaystyle {}V_{1},\ldots ,V_{n}}
and
W
{\displaystyle {}W}
denote
vector spaces
over
K
{\displaystyle {}K}
. Show that the set of all
multilinear
mappings is, in a natural way, a vector space, denoted by
Mult
K
(
V
1
,
…
,
V
n
,
W
)
{\displaystyle {}\operatorname {Mult} _{K}{\left(V_{1},\ldots ,V_{n},W\right)}}
.
Let
K
{\displaystyle {}K}
be a
field , let
V
{\displaystyle {}V}
and
W
{\displaystyle {}W}
be
vector spaces
over
K
{\displaystyle {}K}
, and
n
∈
N
{\displaystyle {}n\in \mathbb {N} }
.
Show that the set of all
alternating
mappings
(denoted by
Alt
K
n
(
V
,
W
)
{\displaystyle {}\operatorname {Alt} _{K}^{n}{\left(V,W\right)}}
)
is a
linear subspace
of
Mult
K
(
V
,
…
,
V
,
W
)
{\displaystyle {}\operatorname {Mult} _{K}{\left(V,\ldots ,V,W\right)}}
(where the vector space
V
{\displaystyle {}V}
appears
n
{\displaystyle {}n}
-fold).
Let
K
{\displaystyle {}K}
be a
field ,
let
V
{\displaystyle {}V}
and
W
{\displaystyle {}W}
be
K
{\displaystyle {}K}
-vector spaces ,
and let
φ
:
V
⟶
W
{\displaystyle \varphi \colon V\longrightarrow W}
denote a
K
{\displaystyle {}K}
-linear mapping , Let
△
:
W
m
⟶
K
{\displaystyle \triangle \colon W^{m}\longrightarrow K}
denote a
multilinear mapping .
Show that the composed mapping
V
m
⟶
K
,
(
v
1
,
…
,
v
m
)
⟼
△
(
φ
(
v
1
)
,
…
,
φ
(
v
m
)
)
,
{\displaystyle V^{m}\longrightarrow K,(v_{1},\ldots ,v_{m})\longmapsto \triangle \left(\varphi (v_{1}),\,\ldots ,\,\varphi (v_{m})\right),}
is multilinear. Moreover, show that, if
△
{\displaystyle {}\triangle }
is
alternating ,
then also
△
∘
φ
n
{\displaystyle {}\triangle \circ \varphi ^{n}}
is alternating, and that, if
φ
{\displaystyle {}\varphi }
is bijective, also the converse holds.
Let
K
{\displaystyle {}K}
be a
field , and let
V
1
,
…
,
V
n
,
W
1
,
…
,
W
n
{\displaystyle {}V_{1},\ldots ,V_{n},W_{1},\ldots ,W_{n}}
and
Z
{\displaystyle {}Z}
be
vector spaces
over
K
{\displaystyle {}K}
. Let
φ
i
:
V
i
⟶
W
i
{\displaystyle \varphi _{i}\colon V_{i}\longrightarrow W_{i}}
denote
linear mappings ,
and let
π
:
W
1
×
⋯
×
W
n
⟶
Z
{\displaystyle \pi \colon W_{1}\times \cdots \times W_{n}\longrightarrow Z}
be a
multilinear mapping .
Show that the mapping
π
∘
(
φ
1
×
⋯
×
φ
n
)
:
V
1
×
⋯
×
V
n
⟶
Z
,
(
v
1
,
…
,
v
n
)
⟼
π
(
φ
1
(
v
1
)
,
…
,
φ
n
(
v
n
)
)
,
{\displaystyle \pi \circ (\varphi _{1}\times \cdots \times \varphi _{n})\colon V_{1}\times \cdots \times V_{n}\longrightarrow Z,(v_{1},\ldots ,v_{n})\longmapsto \pi (\varphi _{1}(v_{1}),\ldots ,\varphi _{n}(v_{n})),}
is also multilinear.
Compute for the
(complex)
matrix
M
=
(
1
+
i
2
i
3
0
1
−
i
−
1
+
3
i
4
−
i
0
2
)
{\displaystyle {}M={\begin{pmatrix}1+{\mathrm {i} }&2{\mathrm {i} }&3\\0&1-{\mathrm {i} }&-1+3{\mathrm {i} }\\4-{\mathrm {i} }&0&2\end{pmatrix}}\,}
the
determinant
and the
inverse matrix .
Determine for which
x
∈
C
{\displaystyle {}x\in \mathbb {C} }
the matrix
(
x
2
+
x
−
x
−
x
3
+
2
x
2
+
5
x
−
1
x
2
−
x
)
{\displaystyle {\begin{pmatrix}x^{2}+x&-x\\-x^{3}+2x^{2}+5x-1&x^{2}-x\end{pmatrix}}}
is invertible.
The Christmas exercise for the whole family
Which construction principle is behind the sequence
1
,
11
,
21
,
1211
,
111221
,
312211
,
.
.
.
?
{\displaystyle 1,\,11,\,21,\,1211,\,111221,\,312211,\,...?}
(Some people claim that this exercise is very easy for primary school children, but quite hard for mathematicians.)
Hand-in-exercises
Let
M
∈
Mat
n
(
Q
)
{\displaystyle {}M\in \operatorname {Mat} _{n}(\mathbb {Q} )}
.
Show that it does not make a difference, whether we compute the
determinant
in
Q
{\displaystyle {}\mathbb {Q} }
, in
R
{\displaystyle {}\mathbb {R} }
, or in
C
{\displaystyle {}\mathbb {C} }
.
Compute the determinant of the elementary matrices.
Compute the determinant of the matrix
(
1
+
i
3
−
2
i
5
i
1
3
−
i
2
i
−
4
−
i
2
+
i
)
.
{\displaystyle {\begin{pmatrix}1+{\mathrm {i} }&3-2{\mathrm {i} }&5\\{\mathrm {i} }&1&3-{\mathrm {i} }\\2{\mathrm {i} }&-4-{\mathrm {i} }&2+{\mathrm {i} }\end{pmatrix}}.}
Compute the determinant of the matrix
A
=
(
2
1
0
−
2
1
3
3
−
1
3
2
4
−
3
2
−
2
2
3
)
.
{\displaystyle {}A={\begin{pmatrix}2&1&0&-2\\1&3&3&-1\\3&2&4&-3\\2&-2&2&3\end{pmatrix}}\,.}
Let
K
{\displaystyle {}K}
be a
field ,
and let
V
{\displaystyle {}V}
denote a
K
{\displaystyle {}K}
-vector space . Let
△
:
V
×
V
×
V
⟶
K
{\displaystyle \triangle \colon V\times V\times V\longrightarrow K}
be a
multilinear
and
alternating
mapping .
Let
u
,
v
,
w
∈
V
{\displaystyle {}u,v,w\in V}
.
Simplify the term
△
(
u
+
v
+
w
2
u
+
3
z
4
w
−
5
z
)
.
{\displaystyle \triangle {\begin{pmatrix}u+v+w\\2u+3z\\4w-5z\end{pmatrix}}.}
Let
K
{\displaystyle {}K}
be a
field ,
and let
V
1
,
…
,
V
n
{\displaystyle {}V_{1},\ldots ,V_{n}}
vector spaces
over
K
{\displaystyle {}K}
. Let
φ
i
:
V
i
⟶
K
{\displaystyle \varphi _{i}\colon V_{i}\longrightarrow K}
(
i
=
1
,
…
,
n
{\displaystyle {}i=1,\ldots ,n}
),
denote
linear mappings .
Show that the mapping
φ
:
V
1
×
⋯
×
V
n
⟶
K
,
(
v
1
,
…
,
v
n
)
⟼
φ
1
(
v
1
)
⋯
φ
n
(
v
n
)
,
{\displaystyle \varphi \colon V_{1}\times \cdots \times V_{n}\longrightarrow K,{\left(v_{1},\ldots ,v_{n}\right)}\longmapsto \varphi _{1}(v_{1})\cdots \varphi _{n}(v_{n}),}
is
multilinear .
Let
K
{\displaystyle {}K}
be a
field ,
and let
T
=
{
M
∈
Mat
3
×
3
(
K
)
∣
det
M
=
0
}
⊂
Mat
3
×
3
(
K
)
=
K
9
{\displaystyle {}T={\left\{M\in \operatorname {Mat} _{3\times 3}(K)\mid \det M=0\right\}}\subset \operatorname {Mat} _{3\times 3}(K)=K^{9}\,}
be the set of all
3
×
3
{\displaystyle {}3\times 3}
-matrices with
determinant
0
{\displaystyle {}0}
.
a) Show that
T
{\displaystyle {}T}
is not a
linear subspace
of
Mat
3
×
3
(
K
)
{\displaystyle {}\operatorname {Mat} _{3\times 3}(K)}
.
b) Show that
T
{\displaystyle {}T}
contains a linear subspace of
Mat
3
×
3
(
K
)
{\displaystyle {}\operatorname {Mat} _{3\times 3}(K)}
of dimension
6
{\displaystyle {}6}
.
We consider the mapping
f
:
N
⟶
N
{\displaystyle f\colon \mathbb {N} \longrightarrow \mathbb {N} }
that is described in
Exercise 16.33
(the natural numbers are given as finite sequences in the decimal system).
Is
f
{\displaystyle {}f}
increasing?
Is
f
{\displaystyle {}f}
surjective?
Is
f
{\displaystyle {}f}
injective?
Does
f
{\displaystyle {}f}
have a
fixed point ?
Exercise to give up
Please hand in solutions to the following exercise directly to the lecturer.
Let
K
{\displaystyle {}K}
be a
field ,
and let
T
=
{
M
∈
Mat
3
×
3
(
K
)
∣
det
M
=
0
}
⊂
Mat
3
×
3
(
K
)
=
K
9
{\displaystyle {}T={\left\{M\in \operatorname {Mat} _{3\times 3}(K)\mid \det M=0\right\}}\subset \operatorname {Mat} _{3\times 3}(K)=K^{9}\,}
be the set of all
3
×
3
{\displaystyle {}3\times 3}
-matrices with
determinant
0
{\displaystyle {}0}
. Does
T
{\displaystyle {}T}
contain a
linear subspace
of dimension
7
{\displaystyle {}7}
?