Let K {\displaystyle {}K} be a field, and let V 1 , … , V n {\displaystyle {}V_{1},\ldots ,V_{n}} and W {\displaystyle {}W} be vector spaces over K {\displaystyle {}K} . A mapping
is called multilinear if, for every i ∈ { 1 , … , n } {\displaystyle {}i\in \{1,\ldots ,n\}} and every ( n − 1 ) {\displaystyle {}(n-1)} -tuple ( v 1 , … , v i − 1 , v i + 1 , … , v n ) {\displaystyle {}(v_{1},\ldots ,v_{i-1},v_{i+1},\ldots ,v_{n})} with v j ∈ V j {\displaystyle {}v_{j}\in V_{j}} , the induced mapping
is K {\displaystyle {}K} -linear.