Let K {\displaystyle {}K} be a field, let V {\displaystyle {}V} and W {\displaystyle {}W} denote K {\displaystyle {}K} -vector spaces, and let n ∈ N {\displaystyle {}n\in \mathbb {N} } . A multilinear mapping
is called alternating if the following holds: Whenever in v = ( v 1 , … , v n ) {\displaystyle {}v=(v_{1},\ldots ,v_{n})} , two entries are identical, that is v i = v j {\displaystyle {}v_{i}=v_{j}} for a pair i ≠ j {\displaystyle {}i\neq j} , then