Hilbert Book Model Project/Quaternionic Field Equations/Fourier Transform/nl

From Wikiversity
Jump to navigation Jump to search

<Hilbert Book Model Project/nl

Fourier Transformaties[edit]

Fourier ruimtes[edit]

In een oneindig dimensionale Hilbertruimte, een Fourier-transformatie bewerkstelligt een volledige transformatie van een oude orthonormale basis  naar een andere orthonormale basis , zodanig dat geen van de nieuwe basisvectoren geschreven kan worden als een lineaire combinatie die niet alle oude basisvectoren bevat

De basisvector  is eigenvector is van een normale operator  met eigenwaarden . Basis is orthonormaal.

Ook de basisvector  is eigenvector is van een normale operator met eigenwaarden . Basis is ook orthonormaal.

Het inproduct  is een functie van zowel de als de coördinaten

Vergeet niet dat de functie  ten opzichte van een orthonormale basis  met behulp van de corresponderende operator weergegeven kan worden als

Deze vergelijkingen beschrijven Fouriertransformatie paren  en hetzelfde continuüm . Dat continuüm wordt zowel voorgesteld door  als door en deze functies komen overeen met de operatoren en . Op deze wijze beschrijven en hetzelfde ding en dat is het continuüm .

Het inproduct is een functie die aan de volgende gevolgtrekkingen voldoet.

  • Convolutie van functies in de oude basis  representatie wordt vermenigvuldiging in de nieuwe basis representatie.
  • Evenzo convolutie van functies in de nieuwe basis  representatie wordt vermenigvuldiging in de oude basis representatie.
  • Differentiatie in de oude basis representatie wordt vermenigvuldiging met de nieuwe coördinaat in de nieuwe basis representatie.
  • Evenzo wordt differentiatie in de nieuwe basis representatie vermenigvuldiging met de oude coördinaat in de oude basis representatie.
Inwendige producten[edit]

Onthoudt dat

Complexe Fourier transformatie[edit]

Fourier transformatie is goed bekend voor voor complexe functies. We zullen deze kennis toepassen door het opzetten van complexe parameter ruimten binnen de quaternionische achtergrondparameterruimte.

Als een axis as langs de genormaliseerde vector  door de quaternionische achtergrondparameterruimte wordt getrokken, dan gelden

Hier speelt de rol van parameter langs richting  en speelt de rol van parameter langs richting .

Vector kan in een willekeurige richting gekozen worden en kan op een willekeurige locatie in het quaternionische achtergrondparameterruimte aangrijpen,

Het inprodukt heeft betrekking op een twee-parametrische functie die in de richting van correspondeert met

Hier zijn en complexe functies met complex imaginaire basisgetal .

Quaternionische Fourier transformatie[edit]

Meer in het algemeen moet de specificatie van de quaternionische Fourier transformatie omgaan met het niet-commuteren van de vermenigvuldiging van quaternionische functies.

We zien in de formules dat deze methode slechts een rotatie van parameterruimtes en functies tot stand brengt. In de op complexe getallen gebaseerd Hilbertruimte, zou het geen enkele verandering teweegbrengen. De Fourier transformatie installeert slechts een gedeeltelijke rotatie. Dit resulteert in een links en rechts georiënteerde Fourier-transformaties.

Links georiënteerde Fourier-transformatie[edit]

De links georiënteerde Fourier-transformatie  heeft een inverse .

De links georiënteerde Fourier-transformatie wordt gedefinieerd door:

Voor twee leden  en van een orthonormale basis geldt

Voor twee leden en van een orthonormale basis geldt

De omgekeerde transformatie wordt gegeven door

Rechts georiënteerde Fourier-transformatie[edit]

Hetzelfde geldt voor de rechts georiënteerde Fourier-transformatie

Conclusie[edit]

De toegevoegde waarde van de rechter en linker georiënteerde Fourier transformaties is laag. De op complex getallen gebaseerde Fourier-transformatie heeft voor de spectrale analyse van continuüms een veel grotere waarde. Dan moet de analyse wel tot één enkele richting per onderzoek beperkt worden,

Belangrijk is het feit dat de Fourier-transformatie-paren hetzelfde continuüm beschrijven .