Walsh permutation; nimber multiplication; powers of wp(15, 5,11,13)
Appearance
Walsh permutation; nimber multiplication |
Walsh permutation wp(15,5,11,13), related to the nimber multiplication table, has one fixed point and a 15-cycle.
Thus it has 15 different powers, which form a cyclic group.
The black numbers are the exponents. The grey numbers from 1 to 15 on the left refer to the Walsh functions defined by the pattern of odd numbers. The orange numbers in the dual matrix read f.r.t.l. give the compression vectors. |
This is the group's Cayley table, showing the multiplication of the compression matrices:
Compression vectors: 1 2 4 8 15 5 11 13 12 4 7 9 6 11 1 2 14 7 15 5 3 1 12 4 10 15 6 11 8 12 14 7 13 6 3 1 9 14 10 15 2 3 8 12 5 10 13 6 4 8 9 14 11 13 2 3 7 9 5 10
Permutations: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 15 5 10 11 4 14 1 13 2 8 7 6 9 3 12 0 12 4 8 7 11 3 15 9 5 13 1 14 2 10 6 0 6 11 13 1 7 10 12 2 4 9 15 3 5 8 14 0 14 7 9 15 1 8 6 5 11 2 12 10 4 13 3 0 3 1 2 12 15 13 14 4 7 5 6 8 11 9 10 0 10 15 5 6 12 9 3 11 1 4 14 13 7 2 8 0 8 12 4 14 6 2 10 7 15 11 3 9 1 5 13 0 13 6 11 3 14 5 8 1 12 7 10 2 15 4 9 0 9 14 7 10 3 4 13 15 6 1 8 5 12 11 2 0 2 3 1 8 10 11 9 12 14 15 13 4 6 7 5 0 5 10 15 13 8 7 2 6 3 12 9 11 14 1 4 0 4 8 12 9 13 1 5 14 10 6 2 7 3 15 11 0 11 13 6 2 9 15 4 3 8 14 5 1 10 12 7 0 7 9 14 5 2 12 11 10 13 3 4 15 8 6 1
These 15 Walsh permutations are also closed under addition (bit-XOR) together with the neutral element wp(zeros)=zeros.
This is the corresponding Cayley table, where 0 stands for the netral element and all other n for wp(15, 5,11,13)^(n-1):
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 0 5 9 15 2 11 14 10 3 8 6 13 12 7 4 2 5 0 6 10 1 3 12 15 11 4 9 7 14 13 8 3 9 6 0 7 11 2 4 13 1 12 5 10 8 15 14 4 15 10 7 0 8 12 3 5 14 2 13 6 11 9 1 5 2 1 11 8 0 9 13 4 6 15 3 14 7 12 10 6 11 3 2 12 9 0 10 14 5 7 1 4 15 8 13 7 14 12 4 3 13 10 0 11 15 6 8 2 5 1 9 8 10 15 13 5 4 14 11 0 12 1 7 9 3 6 2 9 3 11 1 14 6 5 15 12 0 13 2 8 10 4 7 10 8 4 12 2 15 7 6 1 13 0 14 3 9 11 5 11 6 9 5 13 3 1 8 7 2 14 0 15 4 10 12 12 13 7 10 6 14 4 2 9 8 3 15 0 1 5 11 13 12 14 8 11 7 15 5 3 10 9 4 1 0 2 6 14 7 13 15 9 12 8 1 6 4 11 10 5 2 0 3 15 4 8 14 1 10 13 9 2 7 5 12 11 6 3 0
The matrix is symmetric and the permutations formed by the rows are not Walsh.