Vector bundles and tight closure (Triest 2023)/Lecture 3/latex

From Wikiversity
Jump to navigation Jump to search

\setcounter{section}{3}






\zwischenueberschrift{Plus closure}


For an ideal
\mavergleichskette
{\vergleichskette
{ I }
{ \subseteq }{ R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in a domain $R$ define its \definitionswort {plus closure}{} by
\mavergleichskettedisp
{\vergleichskette
{ I^+ }
{ =} { { \left\{ f \in R \mid \text{there exists a finite domain extension } R \subseteq T \text{ such that } f \in IT \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Equivalent: Let $R^+$ be the
\betonung{absolute integral closure}{} of $R$. This is the integral closure of $R$ in an algebraic closure of the quotient field $Q(R)$ \zusatzklammer {first considered by Artin \cite{artinjoints}} {} {.} Then
\mathdisp {f \in I^+ \text{ if and only if } f \in IR^+} { . }
The plus closure commutes with localization.

We also have the inclusion
\mavergleichskette
{\vergleichskette
{ I^+ }
{ \subseteq }{ I^* }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Here the question arises:

Question: Is
\mavergleichskette
{\vergleichskette
{ I^+ }
{ = }{ I^* }
{ }{ }
{ }{ }
{ }{ }
} {}{}{?}

This question is known as the
\betonung{tantalizing question}{} in tight closure theory.

In terms of forcing algebras and their torsors, the containment inside the plus closure means that there exists a $d$-dimensional closed subscheme inside the torsor which meets the exceptional fiber \zusatzklammer {the fiber over the maximal ideal} {} {} in isolated points, and this means that the so-called superheight of the extended ideal is $d$. In this case the local cohomological dimension of the torsor must be $d$ as well, since it contains a closed subscheme with this cohomological dimension. So also the plus closure depends only on the torsor.

In characteristic zero, the plus closure behaves very differently compared with positive characteristic. If $R$ is a normal domain of characteristic $0$, then the trace map shows that the plus closure is trivial,
\mavergleichskette
{\vergleichskette
{ I^+ }
{ = }{ I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} for every ideal $I$.






\zwischenueberschrift{Plus closure in dimension two}

Let $K$ be a field and let $R$ be a normal two-dimensional standard-graded domain over $K$ with corresponding smooth projective curve $C$. A homogeneous ${\mathfrak m}$-primary ideal with homogeneous ideal generators \mathl{f_1 , \ldots , f_n}{} and another homogeneous element $f$ of degree $m$ yield a cohomology class
\mavergleichskettedisp
{\vergleichskette
{ c }
{ =} { \delta(f) }
{ =} { H^1(C, \operatorname{Syz} { \left(f_1 , \ldots , f_n \right) } (m)) }
{ } { }
{ } { }
} {}{}{.} Let \mathl{T(c)}{} be the corresponding torsor. We have seen that the affineness of this torsor over $C$ is equivalent to the affineness of the corresponding torsor over
\mavergleichskette
{\vergleichskette
{ D( {\mathfrak m} ) }
{ \subseteq }{ \operatorname{Spec} { \left( R \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {and to the property of not belonging to the tight closure} {} {.} Now we want to understand what the property
\mavergleichskette
{\vergleichskette
{ f }
{ \in }{ I^+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} means for $c$ and for \mathl{T(c)}{.} Instead of the plus closure we will work with the \stichwort {graded plus closure} {} \mathl{I^{+ \text{gr} }}{,} where
\mavergleichskette
{\vergleichskette
{ f }
{ \in }{ I^{+ \text{gr} } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds if and only if there exists a finite graded extension
\mavergleichskette
{\vergleichskette
{ R }
{ \subseteq }{ S }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} such that
\mavergleichskette
{\vergleichskette
{ f }
{ \in }{ IS }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} The existence of such an $S$ translates into the existence of a finite morphism
\mathdisp {\varphi \colon C'= \operatorname{Proj} { \left( S \right) } \longrightarrow \operatorname{Proj} { \left( R \right) } = C} { }
such that
\mavergleichskette
{\vergleichskette
{ \varphi^*(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Here we may assume that $C'$ is also smooth. Therefore, we discuss the more general question when a cohomology class
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ H^1(C, {\mathcal S} ) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} where ${\mathcal S}$ is a locally free sheaf on $C$, can be annihilated by a finite morphism
\mathdisp {C' \longrightarrow C} { }
of smooth projective curves. The advantage of this more general approach is that we may work with short exact sequences \zusatzklammer {in particular, the sequences coming from the Harder-Narasimhan filtration} {} {} in order to reduce the problem to semistable bundles which do not necessarily come from an ideal situation.




\inputfaktbeweis
{Projective curve/Vector bundle/Cohomology class/Finite annihilation and torsor/Fact}
{Lemma}
{}
{

\faktsituation {Let $C$ denote a smooth projective curve over an algebraically closed field $K$, let ${\mathcal S}$ be a locally free sheaf on $C$ and let
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ H^1(C, {\mathcal S}) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} be a cohomology class with corresponding torsor \mathl{T \rightarrow C}{.}}
\faktuebergang {Then the following conditions are equivalent.}
\faktfolgerung {\aufzaehlungzwei {There exists a finite morphism
\mathdisp {\varphi \colon C' \longrightarrow C} { }
from a smooth projective curve $C'$ such that
\mavergleichskette
{\vergleichskette
{ \varphi^*(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} } {There exists a projective curve
\mavergleichskette
{\vergleichskette
{ Z }
{ \subseteq }{ T }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }}
\faktzusatz {}

}
{

If (1) holds, then the pull-back
\mavergleichskette
{\vergleichskette
{ \varphi^*(T) }
{ = }{ T \times_C C' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} is trivial \zusatzklammer {as a torsor} {} {,} as it equals the torsor given by
\mavergleichskette
{\vergleichskette
{\varphi^*(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Hence \mathl{\varphi^*(T)}{} is isomorphic to a vector bundle and contains in particular a copy of $C'$. The image $Z$ of this copy is a projective curve inside $T$.

If (2) holds, then let $C'$ be the normalization of $Z$. Since $Z$ dominates $C$, the resulting morphism
\mathdisp {\varphi \colon C' \longrightarrow C} { }
is finite. Since this morphism factors through $T$ and since $T$ annihilates the cohomology class by which it is defined, it follows that
\mavergleichskette
{\vergleichskette
{ \varphi^*(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}


We want to show that the cohomological criterion for \zusatzklammer {non} {} {-}affineness of a torsor along the Harder-Narasimhan filtration of the vector bundle also holds for the existence of projective curves inside the torsor, under the condition that the projective curve is defined over a finite field. This implies that tight closure is \zusatzklammer {graded} {} {} plus closure for graded ${\mathfrak m}$-primary ideals in a two-dimensional graded domain over a finite field.






\zwischenueberschrift{Annihilation of cohomology classes of strongly semistable sheaves}

We deal first with the situation of a strongly semistable sheaf ${\mathcal S}$ of degree $0$. The following two results are due to Lange and Stuhler \cite{langestuhler}. We say that a locally free sheaf is \stichwort {\'{e}tale trivializable} {} if there exists a finite \'{e}tale morphism $\varphi \colon C' \rightarrow C$ such that
\mavergleichskette
{\vergleichskette
{ \varphi^*( {\mathcal S} ) }
{ \cong }{ {\mathcal O}_{ C' }^r }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Such bundles are directly related to linear representations of the \'{e}tale fundamental group.




\inputfakt
{Finite field/Smooth projective curve/Vector bundel/Etale trivializable and Frobenius periodicity/Fact}
{Lemma}
{}
{

\faktsituation {Let $K$ denote a finite field \zusatzklammer {or the algebraic closure of a finite field} {} {} and let $X$ be a smooth projective curve over $K$. Let ${\mathcal S}$ be a locally free sheaf over $X$.}
\faktfolgerung {Then ${\mathcal S}$ is \'{e}tale trivializable if and only if there exists some $n$ such that
\mavergleichskette
{\vergleichskette
{ F^{n*} {\mathcal S} }
{ \cong }{ {\mathcal S} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktzusatz {}

}





\inputfaktbeweis
{Finite field/Smooth projective curve/Vector bundle/Strongly semistable degree 0/Trivializable/Fact}
{Theorem}
{}
{

\faktsituation {Let $K$ denote a finite field \zusatzklammer {or the algebraic closure of a finite field} {} {} and let $X$ be a smooth projective curve over $K$. Let ${\mathcal S}$ be a strongly semistable locally free sheaf over $X$}
\faktvoraussetzung {of degree $0$.}
\faktfolgerung {Then there exists a finite morphism
\mathdisp {\varphi \colon Y \longrightarrow X} { }
such that \mathl{\varphi^*( {\mathcal S} )}{} is trivial.}
\faktzusatz {}

}
{

We consider the family of locally free sheaves
\mathbed {F^{e*}( {\mathcal S} )} {}
{e \in \N} {}
{} {} {} {.} Because these are all semistable of degree $0$, and defined over the same finite field, we must have \zusatzklammer {by the existence of the moduli space for vector bundles} {} {} a repetition, i.e.
\mavergleichskettedisp
{\vergleichskette
{ F^{e*}( {\mathcal S} ) }
{ \cong} { F^{e'*}( {\mathcal S} ) }
{ } { }
{ } { }
{ } { }
} {}{}{} for some
\mavergleichskette
{\vergleichskette
{ e' }
{ > }{ e }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} By Lemma 3.2 , the bundle \mathl{F^{e*}( {\mathcal S} )}{} admits an \'{e}tale trivialization $\varphi \colon Y \rightarrow X$. Hence the finite map \mathl{F^{e} \circ \varphi}{} trivializes the bundle.

}





\inputfaktbeweis
{Finite field/Smooth projective curve/Vector bundle/Strongly semistable degree nonnegative/Finite annihilation/Fact}
{Theorem}
{}
{

\faktsituation {Let $K$ denote a finite field \zusatzklammer {or the algebraic closure of a finite field} {} {} and let $X$ be a smooth projective curve over $K$. Let ${\mathcal S}$ be a strongly semistable locally free sheaf over $X$ of nonnegative degree and let
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ H^1(X, {\mathcal S} ) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} denote a cohomology class.}
\faktfolgerung {Then there exists a finite morphism
\mathdisp {\varphi \colon Y \longrightarrow X} { }
such that \mathl{\varphi^*(c)}{} is trivial.}
\faktzusatz {}

}
{

If the degree of ${\mathcal S}$ is positive, then a Frobenius pull-back \mathl{F^{e*}( {\mathcal S} )}{} has arbitrary large degree and is still semistable. By Serre duality we get that
\mavergleichskette
{\vergleichskette
{ H^1(X, F^{e*}( {\mathcal S} )) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} So in this case we can annihilate the class by an iteration of the Frobenius alone.

So suppose that the degree is $0$. Then there exists by Theorem 3.3 a finite morphism which trivializes the bundle. So we may assume that
\mavergleichskette
{\vergleichskette
{ {\mathcal S} }
{ \cong }{ {\mathcal O}_{ X }^r }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Then the cohomology class has several components
\mavergleichskette
{\vergleichskette
{ c_i }
{ \in }{ H^1( X, {\mathcal O}_{ X } ) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} and it is enough to annihilate them separately by finite morphisms. But this is possible by the parameter theorem of K. Smith \cite{smithparameter} \zusatzklammer {or directly using Frobenius and Artin-Schreier extensions} {} {.}

}






\zwischenueberschrift{The general case}

We look now at an arbitrary locally free sheaf ${\mathcal S}$ on $C$, a smooth projective curve over a finite field. We want to show that the same numerical criterion \zusatzklammer {formulated in terms of the Harder-Narasimhan filtration} {} {} for non-affineness of a torsor holds also for the finite annihilation of the corresponding cohomomology class \zusatzklammer {or the existence of a projective curve inside the torsor} {} {.}




\inputfaktbeweis
{Finite field/Smooth projective curve/Vector bundle/Finite annihilation/Harder-Narasimhan-criterion/Fact}
{Theorem}
{}
{

\faktsituation {Let $K$ denote a finite field \zusatzklammer {or the algebraic closure of a finite field} {} {} and let $X$ be a smooth projective curve over $K$. Let ${\mathcal S}$ be a locally free sheaf over $X$ and let
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ H^1(X, {\mathcal S} ) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} denote a cohomology class. Let
\mavergleichskette
{\vergleichskette
{ {\mathcal S}_1 }
{ \subset }{ \ldots }
{ \subset }{ {\mathcal S}_t }
{ }{ }
{ }{ }
} {}{}{} be a strong Harder-Narasimhan filtration of \mathl{F^{e*} ( {\mathcal S} )}{.} We choose $i$ such that \mathl{{\mathcal S}_{i} / {\mathcal S}_{i-1}}{} has degree $\geq 0$ and that \mathl{{\mathcal S}_{i+1} / {\mathcal S}_{i}}{} has degree $< 0$. We set
\mavergleichskette
{\vergleichskette
{ {\mathcal Q} }
{ = }{ F^{e*}({\mathcal S})/ {\mathcal S}_i }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktuebergang {Then the following are equivalent.}
\faktfolgerung {\aufzaehlungzwei {The class $c$ can be annihilated by a finite morphism. } {Some Frobenius power of the image of \mathl{F^{e*}(c)}{} inside \mathl{H^1(X, {\mathcal Q} )}{} is $0$. }}
\faktzusatz {}

}
{

Suppose that (1) holds. Then the torsor is not affine and hence by Theorem 2.12 also (2) holds.

So suppose that (2) is true. By applying a certain power of the Frobenius, we may assume that the image of the cohomology class in ${\mathcal Q}$ is $0$. Hence the class stems from a cohomology class
\mavergleichskette
{\vergleichskette
{ c_i }
{ \in }{ H^1(X, {\mathcal S}_i) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} We look at the short exact sequence
\mathdisp {0 \longrightarrow {\mathcal S}_{i-1} \longrightarrow {\mathcal S}_{i} \longrightarrow {\mathcal S}_{i}/ {\mathcal S}_{i-1} \longrightarrow 0} { , }
where the sheaf on the right hand side has a nonnegative degree. Therefore the image of $c_i$ in \mathl{H^1(X , {\mathcal S}_{i} / {\mathcal S}_{i-1})}{} can be annihilated by a finite morphism due to Theorem 3.4 . Hence, after applying a finite morphism, we may assume that $c_i$ stems from a cohomology class
\mavergleichskette
{\vergleichskette
{ c_{i-1} }
{ \in }{ H^1(X, {\mathcal S}_{i-1} ) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Going on inductively we see that $c$ can be annihilated by a finite morphism.

}





\inputfaktbeweis
{Finite field/Smooth projective curve/Vector bundle/Affineness and nonexistence of curves/Fact}
{Theorem}
{}
{

\faktsituation {Let $C$ denote a smooth projective curve over the algebraic closure of a finite field $K$, let ${\mathcal S}$ be a locally free sheaf on $C$ and let
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ H^1(C, {\mathcal S}) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} be a cohomology class with corresponding torsor \mathl{T \rightarrow C}{.}}
\faktfolgerung {Then $T$ is affine if and only if it does not contain any projective curve.}
\faktzusatz {}

}
{

Due to Theorem 2.12 and Theorem 3.5 , for both properties the same numerical criterion does hold.

}


These results imply the following theorem in the setting of a two-dimensional graded ring.




\inputfakt
{Tight closure/Plus closure/Two-dimensional/Standard-graded/Fact}
{Theorem}
{}
{

\faktsituation {Let $R$ be a standard-graded, two-dimensional normal domain over \zusatzklammer {the algebraic closure of} {} {} a finite field. Let $I$ be an $R_+$-primary graded ideal.}
\faktfolgerung {Then
\mavergleichskettedisp
{\vergleichskette
{ I^* }
{ =} { I^+ }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\faktzusatz {}

}


This is also true for non-primary graded ideals and also for submodules in finitely generated graded submodules. Moreover, G. Dietz  \cite{dietztight} has shown that one can get rid also of the graded assumption \zusatzklammer {of the ideal or module, but not of the ring} {} {.}