Talk:PlanetPhysics/Examples of Functor Categories

From Wikiversity
Jump to navigation Jump to search

Original TeX Content from PlanetPhysics Archive[edit source]

%%% This file is part of PlanetPhysics snapshot of 2011-09-01
%%% Primary Title: examples of functor categories
%%% Primary Category Code: 00.
%%% Filename: ExamplesOfFunctorCategories.tex
%%% Version: 2
%%% Owner: bci1
%%% Author(s): bci1
%%% PlanetPhysics is released under the GNU Free Documentation License.
%%% You should have received a file called fdl.txt along with this file.        
%%% If not, please write to gnu@gnu.org.
\documentclass[12pt]{article}
\pagestyle{empty}
\setlength{\paperwidth}{8.5in}
\setlength{\paperheight}{11in}

\setlength{\topmargin}{0.00in}
\setlength{\headsep}{0.00in}
\setlength{\headheight}{0.00in}
\setlength{\evensidemargin}{0.00in}
\setlength{\oddsidemargin}{0.00in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.00in}
\setlength{\voffset}{0.00in}
\setlength{\hoffset}{0.00in}
\setlength{\marginparwidth}{0.00in}
\setlength{\marginparsep}{0.00in}
\setlength{\parindent}{0.00in}
\setlength{\parskip}{0.15in}

\usepackage{html}

% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}

% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%\usepackage{xypic}

% there are many more packages, add them here as you need them

% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym,enumerate}
\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]

\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}

\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}

\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}

\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}

\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}

\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}

\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathsf{G}(\mathcal P)}}

\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}

\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}

\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}

%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%\usepackage{xypic}

\def\baselinestretch{1.1}


\def\C{C^{\ast}}

\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}

\begin{document}

 \subsection{Introduction}

Let us recall the essential data required to define \htmladdnormallink{functor categories}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}. One requires two arbitrary \htmladdnormallink{categories}{http://planetphysics.us/encyclopedia/Cod.html} that, in principle, could be large ones, $\mathcal{\A}$ and $\mathcal{C}$, and also the class
$$\textbf{M} = [\mathcal{\A},\mathcal{C}]$$
(alternatively denoted as $\mathcal{C}^{\mathcal{\A}}$) of all covariant \htmladdnormallink{functors}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} from $\mathcal{\A}$ to $\mathcal{C}$. For any two such functors $F, K \in [\mathcal{\A}, \mathcal{C}]$, $ F: \mathcal{\A} \rightarrow \mathcal{C}$ and $ K: \mathcal{\A} \rightarrow \mathcal{C}$, the class of all \htmladdnormallink{natural transformations}{http://planetphysics.us/encyclopedia/VariableCategory2.html} from $F$ to $K$ is denoted by $[F, K]$, (or simply denoted by $K^F$). In the particular case when $[F,K]$ is a \textbf{set} one can still define for a \htmladdnormallink{small category}{http://planetphysics.us/encyclopedia/Cod.html} $\mathcal{\A}$, the set $Hom(F,K)$. Thus, (cf. p. 62 in \cite{Mitchell65}), when $\mathcal{\A}$ is a {\em small} category the class $[F, K]$ of natural transformations from $F$ to $K$ may be viewed as a subclass of the cartesian product $\prod_{A \in \mathcal{\A}}[F(A), K(A)]$, and because the latter is a {\em set} so is $[F, K]$ as well. Therefore, with the categorical law of \htmladdnormallink{composition}{http://planetphysics.us/encyclopedia/Cod.html} of natural transformations of functors, and for $\mathcal{\A}$ being small, $\textbf{M} = [\mathcal{\A},\mathcal{C}]$ satisfies the conditions for the definition of a category, and it is in fact a functor category.


\subsection{Examples}

\begin{enumerate}
\item Let us consider $\mathcal{A}b$ to be a small \htmladdnormallink{abelian category}{http://planetphysics.us/encyclopedia/AbelianCategory2.html} and let $\mathbb{G}_{Ab}$ be the category of finite Abelian (or commutative) \htmladdnormallink{groups}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html}, as well as the set of all covariant functors from $\mathcal{A}b$ to
$\mathbb{G}_{Ab}$. Then, one can show by following the steps defined in the definition of a
functor category that $[\mathcal{A}b,\mathbb{G}_{Ab}]$, or
${\mathbb{G}_{Ab}}^{\mathcal{A}b}$ thus defined is an \emph{Abelian functor category}.

\item Let $\mathbb{G}_{Ab}$ be a small category of finite Abelian (or commutative) groups and, also let $\grp_G$ be a small category of group-groupoids, that is, group \htmladdnormallink{objects}{http://planetphysics.us/encyclopedia/TrivialGroupoid.html} in the \htmladdnormallink{category of groupoids}{http://planetphysics.us/encyclopedia/GroupoidCategory.html}. Then, one can show that the imbedding functors
$\textbf{I}$: from $\mathbb{G}_{Ab}$ into $\grp_G$ form a functor category
${\grp_G}^{\mathbb{G}_{Ab}}$.

\item In the general case when $\mathcal{\A}$ is not small, the proper class
$$\textbf{M} = [\mathcal{\A}, \mathcal{\A'}]$$ may be endowed with the structure of a {\em \htmladdnormallink{supercategory}{http://planetphysics.us/encyclopedia/SuperCategory6.html}} defined as any formal interpretation of \htmladdnormallink{ETAS}{http://planetphysics.us/encyclopedia/ETACAxioms.html} with the usual categorical \htmladdnormallink{composition law}{http://planetphysics.us/encyclopedia/Identity2.html} for natural transformations of functors; similarly, one can construct a meta-category called the \emph{supercategory of all functor categories}.
\end{enumerate}

\begin{thebibliography}{9}

\bibitem{Mitchell65}
Mitchell, B.: 1965, \emph{Theory of Categories}, Academic Press: London.

\bibitem{NP1975}
Ref.$288$ in the
Bibliography of Category Theory and Algebraic Topology.

\end{thebibliography} 

\end{document}