Quizbank/Electricity and Magnetism (calculus based)/c11
calcPhyEMq/c11 ID153287923206 (Study guide)
Exams: A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 E0 E1 E2 F0 F1 F2 G0 G1 G2 H0 H1 H2 I0 I1 I2 J0 J1 J2 K0 K1 K2 L0 L1 L2 M0 M1 M2 N0 N1 N2 O0 O1 O2 P0 P1 P2 Q0 Q1 Q2 R0 R1 R2 S0 S1 S2 T0 T1 T2 U0 U1 U2 V0 V1 V2 W0 W1 W2 X0 X1 X2 Y0 Y1 Y2 Z0 Z1 Z2
Answers: A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 E0 E1 E2 F0 F1 F2 G0 G1 G2 H0 H1 H2 I0 I1 I2 J0 J1 J2 K0 K1 K2 L0 L1 L2 M0 M1 M2 N0 N1 N2 O0 O1 O2 P0 P1 P2 Q0 Q1 Q2 R0 R1 R2 S0 S1 S2 T0 T1 T2 U0 U1 U2 V0 V1 V2 W0 W1 W2 X0 X1 X2 Y0 Y1 Y2 Z0 Z1 Z2
78 Tests = 3 versions x 26 variations: Each of the 26 variations (A, B, ...) represents a different random selection of questions taken from the study guide.The 3 versions (0,1,..) all have the same questions but in different order and with different numerical inputs. Unless all students take version "0" it is best to reserve it for the instructor because the questions are grouped according to the order in which they appear on the study guide.
Links: Quizbank/Instructions Study guide file:Quizbank153287923206.pdf
Contact me at User talk:Guy vandegrift if you need any help.
c11 A0
[edit | edit source]1) A 25 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.702 T. What current is required to maintain this balance?
- a) 5.076E-01 A
- b) 5.584E-01 A
- c) 6.142E-01 A
- d) 6.757E-01 A
- e) 7.432E-01 A
2) A charged particle in a magnetic field of 2.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.120E+05 m/s. What is the period of orbit if orbital radius is 0.385 m?
- a) 1.141E-05 s
- b) 1.255E-05 s
- c) 1.381E-05 s
- d) 1.519E-05 s
- e) 1.671E-05 s
- a) 2.275E-06 V
- b) 2.502E-06 V
- c) 2.752E-06 V
- d) 3.027E-06 V
- e) 3.330E-06 V
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0482 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- a) 4.629E-07 s
- b) 5.092E-07 s
- c) 5.601E-07 s
- d) 6.161E-07 s
- e) 6.777E-07 s
c11 A1
[edit | edit source]- a) 7.202E-06 V
- b) 7.922E-06 V
- c) 8.714E-06 V
- d) 9.586E-06 V
- e) 1.054E-05 V
2) A charged particle in a magnetic field of 4.480E-04 T is moving perpendicular to the magnetic field with a speed of 7.700E+05 m/s. What is the period of orbit if orbital radius is 0.368 m?
- a) 2.730E-06 s
- b) 3.003E-06 s
- c) 3.303E-06 s
- d) 3.633E-06 s
- e) 3.997E-06 s
3) A 97 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.753 T. What current is required to maintain this balance?
- a) 7.056E-02 A
- b) 7.762E-02 A
- c) 8.538E-02 A
- d) 9.392E-02 A
- e) 1.033E-01 A
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0775 T . It emerges after being deflected by 73° from its original direction. How much time did it spend in that magnetic field?
- a) 2.819E-07 s
- b) 3.101E-07 s
- c) 3.411E-07 s
- d) 3.752E-07 s
- e) 4.128E-07 s
c11 A2
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0837 T . It emerges after being deflected by 41° from its original direction. How much time did it spend in that magnetic field?
- a) 1.212E-07 s
- b) 1.333E-07 s
- c) 1.466E-07 s
- d) 1.613E-07 s
- e) 1.774E-07 s
- a) 7.202E-06 V
- b) 7.922E-06 V
- c) 8.714E-06 V
- d) 9.586E-06 V
- e) 1.054E-05 V
3) A 11 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.809 T. What current is required to maintain this balance?
- a) 1.432E+00 A
- b) 1.575E+00 A
- c) 1.732E+00 A
- d) 1.905E+00 A
- e) 2.096E+00 A
4) A charged particle in a magnetic field of 6.400E-04 T is moving perpendicular to the magnetic field with a speed of 1.360E+05 m/s. What is the period of orbit if orbital radius is 0.751 m?
- a) 3.154E-05 s
- b) 3.470E-05 s
- c) 3.817E-05 s
- d) 4.198E-05 s
- e) 4.618E-05 s
c11 B0
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.41 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.21 i + 5.39 j + 3.81 k) x 104 m/s?
- a) 4.419E-14 N
- b) 4.861E-14 N
- c) 5.347E-14 N
- d) 5.882E-14 N
- e) 6.470E-14 N
2) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.761 T magnetic field is directed 44° away from the wire?
- a) 2.527E+00 N/m
- b) 2.780E+00 N/m
- c) 3.058E+00 N/m
- d) 3.364E+00 N/m
- e) 3.700E+00 N/m
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- a) 2.875E+00 MeV
- b) 3.162E+00 MeV
- c) 3.479E+00 MeV
- d) 3.827E+00 MeV
- e) 4.209E+00 MeV
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.96 mT and 2.010E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 2.768E+05 m/s
- b) 3.045E+05 m/s
- c) 3.349E+05 m/s
- d) 3.684E+05 m/s
- e) 4.052E+05 m/s
c11 B1
[edit | edit source]1) A long rigind wire carries a 6 A current. What is the magnetic force per unit length on the wire if a 0.222 T magnetic field is directed 23° away from the wire?
- a) 5.205E-01 N/m
- b) 5.725E-01 N/m
- c) 6.297E-01 N/m
- d) 6.927E-01 N/m
- e) 7.620E-01 N/m
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.55 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.96 i + 1.68 j + 6.92 k) x 104 m/s?
- a) 4.179E-14 N
- b) 4.596E-14 N
- c) 5.056E-14 N
- d) 5.562E-14 N
- e) 6.118E-14 N
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.145 m and a magneticfield of 1.03 T. What is their maximum kinetic energy?
- a) 7.342E-01 MeV
- b) 8.076E-01 MeV
- c) 8.884E-01 MeV
- d) 9.772E-01 MeV
- e) 1.075E+00 MeV
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.49 mT and 5.570E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 9.223E+05 m/s
- b) 1.015E+06 m/s
- c) 1.116E+06 m/s
- d) 1.228E+06 m/s
- e) 1.350E+06 m/s
c11 B2
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 9.23 mT and 6.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 4.982E+05 m/s
- b) 5.480E+05 m/s
- c) 6.028E+05 m/s
- d) 6.631E+05 m/s
- e) 7.294E+05 m/s
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.13 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(5.64 i + 1.93 j + 8.71 k) x 104 m/s?
- a) 1.757E-14 N
- b) 1.933E-14 N
- c) 2.126E-14 N
- d) 2.339E-14 N
- e) 2.573E-14 N
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.44 m and a magneticfield of 1.31 T. What is their maximum kinetic energy?
- a) 1.323E+01 MeV
- b) 1.456E+01 MeV
- c) 1.601E+01 MeV
- d) 1.761E+01 MeV
- e) 1.937E+01 MeV
4) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- a) 2.417E+00 N/m
- b) 2.659E+00 N/m
- c) 2.924E+00 N/m
- d) 3.217E+00 N/m
- e) 3.539E+00 N/m
c11 C0
[edit | edit source]1) A circular current loop of radius 2.16 cm carries a current of 1.72 mA. What is the magnitude of the torque if the dipole is oriented at 52 ° to a uniform magnetic fied of 0.24 T?
- a) 3.582E-07 N m
- b) 3.940E-07 N m
- c) 4.334E-07 N m
- d) 4.768E-07 N m
- e) 5.245E-07 N m
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0393 T . It emerges after being deflected by 49° from its original direction. How much time did it spend in that magnetic field?
- a) 4.105E-07 s
- b) 4.515E-07 s
- c) 4.967E-07 s
- d) 5.464E-07 s
- e) 6.010E-07 s
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 7.67 mT and 4.260E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 5.554E+05 m/s
- b) 6.110E+05 m/s
- c) 6.720E+05 m/s
- d) 7.393E+05 m/s
- e) 8.132E+05 m/s
4) A 76 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.367 T. What current is required to maintain this balance?
- a) 3.432E-01 A
- b) 3.775E-01 A
- c) 4.152E-01 A
- d) 4.568E-01 A
- e) 5.024E-01 A
c11 C1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 6.97 mT and 2.240E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 2.656E+05 m/s
- b) 2.922E+05 m/s
- c) 3.214E+05 m/s
- d) 3.535E+05 m/s
- e) 3.889E+05 m/s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0243 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- a) 1.222E-06 s
- b) 1.344E-06 s
- c) 1.479E-06 s
- d) 1.627E-06 s
- e) 1.789E-06 s
3) A circular current loop of radius 3.25 cm carries a current of 2.78 mA. What is the magnitude of the torque if the dipole is oriented at 55 ° to a uniform magnetic fied of 0.523 T?
- a) 2.699E-06 N m
- b) 2.969E-06 N m
- c) 3.266E-06 N m
- d) 3.593E-06 N m
- e) 3.952E-06 N m
4) A 57 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.447 T. What current is required to maintain this balance?
- a) 2.225E-01 A
- b) 2.448E-01 A
- c) 2.692E-01 A
- d) 2.962E-01 A
- e) 3.258E-01 A
c11 C2
[edit | edit source]1) A circular current loop of radius 3.0 cm carries a current of 1.58 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.408 T?
- a) 1.476E-06 N m
- b) 1.624E-06 N m
- c) 1.786E-06 N m
- d) 1.965E-06 N m
- e) 2.162E-06 N m
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0887 T . It emerges after being deflected by 69° from its original direction. How much time did it spend in that magnetic field?
- a) 2.561E-07 s
- b) 2.817E-07 s
- c) 3.099E-07 s
- d) 3.409E-07 s
- e) 3.750E-07 s
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.96 mT and 2.010E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 2.768E+05 m/s
- b) 3.045E+05 m/s
- c) 3.349E+05 m/s
- d) 3.684E+05 m/s
- e) 4.052E+05 m/s
4) A 57 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.447 T. What current is required to maintain this balance?
- a) 2.225E-01 A
- b) 2.448E-01 A
- c) 2.692E-01 A
- d) 2.962E-01 A
- e) 3.258E-01 A
c11 D0
[edit | edit source]1) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.61 T magnetic field is directed 33° away from the wire?
- a) 1.510E+00 N/m
- b) 1.661E+00 N/m
- c) 1.827E+00 N/m
- d) 2.010E+00 N/m
- e) 2.211E+00 N/m
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0263 T . It emerges after being deflected by 65° from its original direction. How much time did it spend in that magnetic field?
- a) 8.137E-07 s
- b) 8.951E-07 s
- c) 9.846E-07 s
- d) 1.083E-06 s
- e) 1.191E-06 s
3) A circular current loop of radius 2.84 cm carries a current of 3.01 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.174 T?
- a) 1.075E-06 N m
- b) 1.182E-06 N m
- c) 1.301E-06 N m
- d) 1.431E-06 N m
- e) 1.574E-06 N m
4) A 57 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.447 T. What current is required to maintain this balance?
- a) 2.225E-01 A
- b) 2.448E-01 A
- c) 2.692E-01 A
- d) 2.962E-01 A
- e) 3.258E-01 A
c11 D1
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0775 T . It emerges after being deflected by 73° from its original direction. How much time did it spend in that magnetic field?
- a) 2.819E-07 s
- b) 3.101E-07 s
- c) 3.411E-07 s
- d) 3.752E-07 s
- e) 4.128E-07 s
2) A circular current loop of radius 2.1 cm carries a current of 5.02 mA. What is the magnitude of the torque if the dipole is oriented at 26 ° to a uniform magnetic fied of 0.184 T?
- a) 5.610E-07 N m
- b) 6.171E-07 N m
- c) 6.788E-07 N m
- d) 7.467E-07 N m
- e) 8.213E-07 N m
3) A 57 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.447 T. What current is required to maintain this balance?
- a) 2.225E-01 A
- b) 2.448E-01 A
- c) 2.692E-01 A
- d) 2.962E-01 A
- e) 3.258E-01 A
4) A long rigind wire carries a 3 A current. What is the magnetic force per unit length on the wire if a 0.534 T magnetic field is directed 18° away from the wire?
- a) 4.950E-01 N/m
- b) 5.445E-01 N/m
- c) 5.990E-01 N/m
- d) 6.589E-01 N/m
- e) 7.248E-01 N/m
c11 D2
[edit | edit source]1) A circular current loop of radius 3.25 cm carries a current of 2.78 mA. What is the magnitude of the torque if the dipole is oriented at 55 ° to a uniform magnetic fied of 0.523 T?
- a) 2.699E-06 N m
- b) 2.969E-06 N m
- c) 3.266E-06 N m
- d) 3.593E-06 N m
- e) 3.952E-06 N m
2) A 62 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.351 T. What current is required to maintain this balance?
- a) 3.999E-01 A
- b) 4.398E-01 A
- c) 4.838E-01 A
- d) 5.322E-01 A
- e) 5.854E-01 A
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0172 T . It emerges after being deflected by 85° from its original direction. How much time did it spend in that magnetic field?
- a) 1.627E-06 s
- b) 1.790E-06 s
- c) 1.969E-06 s
- d) 2.166E-06 s
- e) 2.382E-06 s
4) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.61 T magnetic field is directed 33° away from the wire?
- a) 1.510E+00 N/m
- b) 1.661E+00 N/m
- c) 1.827E+00 N/m
- d) 2.010E+00 N/m
- e) 2.211E+00 N/m
c11 E0
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- a) 4.791E-07 s
- b) 5.271E-07 s
- c) 5.798E-07 s
- d) 6.377E-07 s
- e) 7.015E-07 s
2) A 11 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.809 T. What current is required to maintain this balance?
- a) 1.432E+00 A
- b) 1.575E+00 A
- c) 1.732E+00 A
- d) 1.905E+00 A
- e) 2.096E+00 A
3) A charged particle in a magnetic field of 3.410E-04 T is moving perpendicular to the magnetic field with a speed of 5.010E+05 m/s. What is the period of orbit if orbital radius is 0.508 m?
- a) 5.792E-06 s
- b) 6.371E-06 s
- c) 7.008E-06 s
- d) 7.709E-06 s
- e) 8.480E-06 s
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.23 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(3.84 i + 8.79 j + 9.05 k) x 104 m/s?
- a) 7.509E-14 N
- b) 8.259E-14 N
- c) 9.085E-14 N
- d) 9.994E-14 N
- e) 1.099E-13 N
c11 E1
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 4.6 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.92 i + 1.55 j + 6.22 k) x 104 m/s?
- a) 2.074E-14 N
- b) 2.282E-14 N
- c) 2.510E-14 N
- d) 2.761E-14 N
- e) 3.037E-14 N
2) A 25 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.702 T. What current is required to maintain this balance?
- a) 5.076E-01 A
- b) 5.584E-01 A
- c) 6.142E-01 A
- d) 6.757E-01 A
- e) 7.432E-01 A
3) A charged particle in a magnetic field of 6.400E-04 T is moving perpendicular to the magnetic field with a speed of 1.360E+05 m/s. What is the period of orbit if orbital radius is 0.751 m?
- a) 3.154E-05 s
- b) 3.470E-05 s
- c) 3.817E-05 s
- d) 4.198E-05 s
- e) 4.618E-05 s
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- a) 4.791E-07 s
- b) 5.271E-07 s
- c) 5.798E-07 s
- d) 6.377E-07 s
- e) 7.015E-07 s
c11 E2
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0243 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- a) 1.222E-06 s
- b) 1.344E-06 s
- c) 1.479E-06 s
- d) 1.627E-06 s
- e) 1.789E-06 s
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.22 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(2.85 i + 1.28 j + 8.49 k) x 104 m/s?
- a) 2.222E-14 N
- b) 2.444E-14 N
- c) 2.688E-14 N
- d) 2.957E-14 N
- e) 3.253E-14 N
3) A 72 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 14 g, and the magnitude of the magnetic field is 0.54 T. What current is required to maintain this balance?
- a) 2.651E-01 A
- b) 2.916E-01 A
- c) 3.208E-01 A
- d) 3.529E-01 A
- e) 3.882E-01 A
4) A charged particle in a magnetic field of 3.330E-04 T is moving perpendicular to the magnetic field with a speed of 4.800E+05 m/s. What is the period of orbit if orbital radius is 0.402 m?
- a) 4.784E-06 s
- b) 5.262E-06 s
- c) 5.788E-06 s
- d) 6.367E-06 s
- e) 7.004E-06 s
c11 F0
[edit | edit source]1) A 25 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.702 T. What current is required to maintain this balance?
- a) 5.076E-01 A
- b) 5.584E-01 A
- c) 6.142E-01 A
- d) 6.757E-01 A
- e) 7.432E-01 A
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.011 T . It emerges after being deflected by 70° from its original direction. How much time did it spend in that magnetic field?
- a) 2.095E-06 s
- b) 2.305E-06 s
- c) 2.535E-06 s
- d) 2.789E-06 s
- e) 3.067E-06 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.118 m and a magneticfield of 1.48 T. What is their maximum kinetic energy?
- a) 1.004E+00 MeV
- b) 1.104E+00 MeV
- c) 1.215E+00 MeV
- d) 1.336E+00 MeV
- e) 1.470E+00 MeV
4) A long rigind wire carries a 6 A current. What is the magnetic force per unit length on the wire if a 0.623 T magnetic field is directed 73° away from the wire?
- a) 3.575E+00 N/m
- b) 3.932E+00 N/m
- c) 4.325E+00 N/m
- d) 4.758E+00 N/m
- e) 5.234E+00 N/m
c11 F1
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0482 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- a) 4.629E-07 s
- b) 5.092E-07 s
- c) 5.601E-07 s
- d) 6.161E-07 s
- e) 6.777E-07 s
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.388 m and a magneticfield of 1.19 T. What is their maximum kinetic energy?
- a) 8.491E+00 MeV
- b) 9.340E+00 MeV
- c) 1.027E+01 MeV
- d) 1.130E+01 MeV
- e) 1.243E+01 MeV
3) A 33 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.869 T. What current is required to maintain this balance?
- a) 2.259E-01 A
- b) 2.485E-01 A
- c) 2.734E-01 A
- d) 3.007E-01 A
- e) 3.308E-01 A
4) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.394 T magnetic field is directed 14° away from the wire?
- a) 6.302E-01 N/m
- b) 6.932E-01 N/m
- c) 7.625E-01 N/m
- d) 8.388E-01 N/m
- e) 9.227E-01 N/m
c11 F2
[edit | edit source]1) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.88 T magnetic field is directed 47° away from the wire?
- a) 4.096E+00 N/m
- b) 4.505E+00 N/m
- c) 4.956E+00 N/m
- d) 5.451E+00 N/m
- e) 5.996E+00 N/m
2) A 27 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.85 T. What current is required to maintain this balance?
- a) 3.106E-01 A
- b) 3.416E-01 A
- c) 3.758E-01 A
- d) 4.134E-01 A
- e) 4.547E-01 A
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.232 m and a magneticfield of 1.1 T. What is their maximum kinetic energy?
- a) 2.853E+00 MeV
- b) 3.139E+00 MeV
- c) 3.453E+00 MeV
- d) 3.798E+00 MeV
- e) 4.178E+00 MeV
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0108 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- a) 1.940E-06 s
- b) 2.134E-06 s
- c) 2.347E-06 s
- d) 2.582E-06 s
- e) 2.840E-06 s
c11 G0
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.23 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(3.84 i + 8.79 j + 9.05 k) x 104 m/s?
- a) 7.509E-14 N
- b) 8.259E-14 N
- c) 9.085E-14 N
- d) 9.994E-14 N
- e) 1.099E-13 N
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.85 mT and 3.760E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 4.829E+05 m/s
- b) 5.312E+05 m/s
- c) 5.843E+05 m/s
- d) 6.427E+05 m/s
- e) 7.070E+05 m/s
3) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.355 T magnetic field is directed 53° away from the wire?
- a) 8.520E-01 N/m
- b) 9.372E-01 N/m
- c) 1.031E+00 N/m
- d) 1.134E+00 N/m
- e) 1.247E+00 N/m
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0482 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- a) 4.629E-07 s
- b) 5.092E-07 s
- c) 5.601E-07 s
- d) 6.161E-07 s
- e) 6.777E-07 s
c11 G1
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0263 T . It emerges after being deflected by 65° from its original direction. How much time did it spend in that magnetic field?
- a) 8.137E-07 s
- b) 8.951E-07 s
- c) 9.846E-07 s
- d) 1.083E-06 s
- e) 1.191E-06 s
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.96 mT and 2.010E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 2.768E+05 m/s
- b) 3.045E+05 m/s
- c) 3.349E+05 m/s
- d) 3.684E+05 m/s
- e) 4.052E+05 m/s
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.83 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.16 i + 2.1 j + 1.74 k) x 104 m/s?
- a) 4.783E-14 N
- b) 5.262E-14 N
- c) 5.788E-14 N
- d) 6.367E-14 N
- e) 7.003E-14 N
4) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.761 T magnetic field is directed 44° away from the wire?
- a) 2.527E+00 N/m
- b) 2.780E+00 N/m
- c) 3.058E+00 N/m
- d) 3.364E+00 N/m
- e) 3.700E+00 N/m
c11 G2
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 9.23 mT and 6.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 4.982E+05 m/s
- b) 5.480E+05 m/s
- c) 6.028E+05 m/s
- d) 6.631E+05 m/s
- e) 7.294E+05 m/s
2) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.83 T magnetic field is directed 22° away from the wire?
- a) 1.062E+00 N/m
- b) 1.168E+00 N/m
- c) 1.285E+00 N/m
- d) 1.413E+00 N/m
- e) 1.555E+00 N/m
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- a) 4.791E-07 s
- b) 5.271E-07 s
- c) 5.798E-07 s
- d) 6.377E-07 s
- e) 7.015E-07 s
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.16 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.13 i + 3.24 j + 6.96 k) x 104 m/s?
- a) 7.691E-14 N
- b) 8.460E-14 N
- c) 9.306E-14 N
- d) 1.024E-13 N
- e) 1.126E-13 N
c11 H0
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.15 mT and 4.440E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.070E+06 m/s
- b) 1.177E+06 m/s
- c) 1.295E+06 m/s
- d) 1.424E+06 m/s
- e) 1.566E+06 m/s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0883 T . It emerges after being deflected by 74° from its original direction. How much time did it spend in that magnetic field?
- a) 2.280E-07 s
- b) 2.508E-07 s
- c) 2.759E-07 s
- d) 3.035E-07 s
- e) 3.339E-07 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.378 m and a magneticfield of 0.835 T. What is their maximum kinetic energy?
- a) 4.365E+00 MeV
- b) 4.801E+00 MeV
- c) 5.281E+00 MeV
- d) 5.809E+00 MeV
- e) 6.390E+00 MeV
- a) 1.322E-06 V
- b) 1.454E-06 V
- c) 1.600E-06 V
- d) 1.759E-06 V
- e) 1.935E-06 V
c11 H1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.62 mT and 2.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 8.092E+05 m/s
- b) 8.901E+05 m/s
- c) 9.791E+05 m/s
- d) 1.077E+06 m/s
- e) 1.185E+06 m/s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- a) 4.791E-07 s
- b) 5.271E-07 s
- c) 5.798E-07 s
- d) 6.377E-07 s
- e) 7.015E-07 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.295 m and a magneticfield of 1.44 T. What is their maximum kinetic energy?
- a) 6.534E+00 MeV
- b) 7.187E+00 MeV
- c) 7.906E+00 MeV
- d) 8.697E+00 MeV
- e) 9.566E+00 MeV
- a) 1.560E-06 V
- b) 1.716E-06 V
- c) 1.888E-06 V
- d) 2.077E-06 V
- e) 2.284E-06 V
c11 H2
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0631 T . It emerges after being deflected by 44° from its original direction. How much time did it spend in that magnetic field?
- a) 1.897E-07 s
- b) 2.087E-07 s
- c) 2.296E-07 s
- d) 2.525E-07 s
- e) 2.778E-07 s
- a) 1.375E-05 V
- b) 1.513E-05 V
- c) 1.664E-05 V
- d) 1.831E-05 V
- e) 2.014E-05 V
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.355 m and a magneticfield of 1.28 T. What is their maximum kinetic energy?
- a) 7.476E+00 MeV
- b) 8.224E+00 MeV
- c) 9.046E+00 MeV
- d) 9.951E+00 MeV
- e) 1.095E+01 MeV
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.13 mT and 2.810E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 6.804E+05 m/s
- b) 7.484E+05 m/s
- c) 8.233E+05 m/s
- d) 9.056E+05 m/s
- e) 9.962E+05 m/s
c11 I0
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0172 T . It emerges after being deflected by 85° from its original direction. How much time did it spend in that magnetic field?
- a) 1.627E-06 s
- b) 1.790E-06 s
- c) 1.969E-06 s
- d) 2.166E-06 s
- e) 2.382E-06 s
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.448 m and a magneticfield of 0.812 T. What is their maximum kinetic energy?
- a) 5.798E+00 MeV
- b) 6.377E+00 MeV
- c) 7.015E+00 MeV
- d) 7.717E+00 MeV
- e) 8.488E+00 MeV
- a) 7.202E-06 V
- b) 7.922E-06 V
- c) 8.714E-06 V
- d) 9.586E-06 V
- e) 1.054E-05 V
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 1.85 mT and 5.080E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 2.746E+06 m/s
- b) 3.021E+06 m/s
- c) 3.323E+06 m/s
- d) 3.655E+06 m/s
- e) 4.020E+06 m/s
c11 I1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.85 mT and 3.760E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 4.829E+05 m/s
- b) 5.312E+05 m/s
- c) 5.843E+05 m/s
- d) 6.427E+05 m/s
- e) 7.070E+05 m/s
- a) 6.795E-06 V
- b) 7.475E-06 V
- c) 8.222E-06 V
- d) 9.045E-06 V
- e) 9.949E-06 V
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0279 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- a) 7.270E-07 s
- b) 7.997E-07 s
- c) 8.797E-07 s
- d) 9.676E-07 s
- e) 1.064E-06 s
4) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.436 m and a magneticfield of 0.881 T. What is their maximum kinetic energy?
- a) 5.342E+00 MeV
- b) 5.877E+00 MeV
- c) 6.464E+00 MeV
- d) 7.111E+00 MeV
- e) 7.822E+00 MeV
c11 I2
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.13 mT and 2.810E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 6.804E+05 m/s
- b) 7.484E+05 m/s
- c) 8.233E+05 m/s
- d) 9.056E+05 m/s
- e) 9.962E+05 m/s
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.295 m and a magneticfield of 1.44 T. What is their maximum kinetic energy?
- a) 6.534E+00 MeV
- b) 7.187E+00 MeV
- c) 7.906E+00 MeV
- d) 8.697E+00 MeV
- e) 9.566E+00 MeV
- a) 1.648E-06 V
- b) 1.813E-06 V
- c) 1.994E-06 V
- d) 2.194E-06 V
- e) 2.413E-06 V
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0837 T . It emerges after being deflected by 41° from its original direction. How much time did it spend in that magnetic field?
- a) 1.212E-07 s
- b) 1.333E-07 s
- c) 1.466E-07 s
- d) 1.613E-07 s
- e) 1.774E-07 s
c11 J0
[edit | edit source]1) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- a) 2.417E+00 N/m
- b) 2.659E+00 N/m
- c) 2.924E+00 N/m
- d) 3.217E+00 N/m
- e) 3.539E+00 N/m
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.388 m and a magneticfield of 1.19 T. What is their maximum kinetic energy?
- a) 8.491E+00 MeV
- b) 9.340E+00 MeV
- c) 1.027E+01 MeV
- d) 1.130E+01 MeV
- e) 1.243E+01 MeV
3) A circular current loop of radius 2.48 cm carries a current of 3.67 mA. What is the magnitude of the torque if the dipole is oriented at 21 ° to a uniform magnetic fied of 0.402 T?
- a) 1.022E-06 N m
- b) 1.124E-06 N m
- c) 1.236E-06 N m
- d) 1.360E-06 N m
- e) 1.496E-06 N m
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.62 mT and 2.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 8.092E+05 m/s
- b) 8.901E+05 m/s
- c) 9.791E+05 m/s
- d) 1.077E+06 m/s
- e) 1.185E+06 m/s
c11 J1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.49 mT and 5.570E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 9.223E+05 m/s
- b) 1.015E+06 m/s
- c) 1.116E+06 m/s
- d) 1.228E+06 m/s
- e) 1.350E+06 m/s
2) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- a) 2.417E+00 N/m
- b) 2.659E+00 N/m
- c) 2.924E+00 N/m
- d) 3.217E+00 N/m
- e) 3.539E+00 N/m
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.413 m and a magneticfield of 0.988 T. What is their maximum kinetic energy?
- a) 6.029E+00 MeV
- b) 6.631E+00 MeV
- c) 7.295E+00 MeV
- d) 8.024E+00 MeV
- e) 8.827E+00 MeV
4) A circular current loop of radius 2.84 cm carries a current of 3.01 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.174 T?
- a) 1.075E-06 N m
- b) 1.182E-06 N m
- c) 1.301E-06 N m
- d) 1.431E-06 N m
- e) 1.574E-06 N m
c11 J2
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.436 m and a magneticfield of 0.881 T. What is their maximum kinetic energy?
- a) 5.342E+00 MeV
- b) 5.877E+00 MeV
- c) 6.464E+00 MeV
- d) 7.111E+00 MeV
- e) 7.822E+00 MeV
2) A circular current loop of radius 2.99 cm carries a current of 4.54 mA. What is the magnitude of the torque if the dipole is oriented at 34 ° to a uniform magnetic fied of 0.107 T?
- a) 7.629E-07 N m
- b) 8.392E-07 N m
- c) 9.232E-07 N m
- d) 1.015E-06 N m
- e) 1.117E-06 N m
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.46 mT and 1.710E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 3.132E+05 m/s
- b) 3.445E+05 m/s
- c) 3.790E+05 m/s
- d) 4.169E+05 m/s
- e) 4.585E+05 m/s
4) A long rigind wire carries a 6 A current. What is the magnetic force per unit length on the wire if a 0.504 T magnetic field is directed 70° away from the wire?
- a) 2.348E+00 N/m
- b) 2.583E+00 N/m
- c) 2.842E+00 N/m
- d) 3.126E+00 N/m
- e) 3.438E+00 N/m
c11 K0
[edit | edit source]1) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.761 T magnetic field is directed 44° away from the wire?
- a) 2.527E+00 N/m
- b) 2.780E+00 N/m
- c) 3.058E+00 N/m
- d) 3.364E+00 N/m
- e) 3.700E+00 N/m
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.448 m and a magneticfield of 0.812 T. What is their maximum kinetic energy?
- a) 5.798E+00 MeV
- b) 6.377E+00 MeV
- c) 7.015E+00 MeV
- d) 7.717E+00 MeV
- e) 8.488E+00 MeV
3) A 34 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.348 T. What current is required to maintain this balance?
- a) 6.626E-01 A
- b) 7.289E-01 A
- c) 8.018E-01 A
- d) 8.819E-01 A
- e) 9.701E-01 A
4) A charged particle in a magnetic field of 3.720E-04 T is moving perpendicular to the magnetic field with a speed of 4.780E+05 m/s. What is the period of orbit if orbital radius is 0.868 m?
- a) 7.793E-06 s
- b) 8.572E-06 s
- c) 9.429E-06 s
- d) 1.037E-05 s
- e) 1.141E-05 s
c11 K1
[edit | edit source]1) A 57 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.447 T. What current is required to maintain this balance?
- a) 2.225E-01 A
- b) 2.448E-01 A
- c) 2.692E-01 A
- d) 2.962E-01 A
- e) 3.258E-01 A
2) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.355 T magnetic field is directed 53° away from the wire?
- a) 8.520E-01 N/m
- b) 9.372E-01 N/m
- c) 1.031E+00 N/m
- d) 1.134E+00 N/m
- e) 1.247E+00 N/m
3) A charged particle in a magnetic field of 4.910E-04 T is moving perpendicular to the magnetic field with a speed of 3.000E+05 m/s. What is the period of orbit if orbital radius is 0.507 m?
- a) 1.062E-05 s
- b) 1.168E-05 s
- c) 1.285E-05 s
- d) 1.413E-05 s
- e) 1.555E-05 s
4) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.118 m and a magneticfield of 1.48 T. What is their maximum kinetic energy?
- a) 1.004E+00 MeV
- b) 1.104E+00 MeV
- c) 1.215E+00 MeV
- d) 1.336E+00 MeV
- e) 1.470E+00 MeV
c11 K2
[edit | edit source]1) A charged particle in a magnetic field of 3.820E-04 T is moving perpendicular to the magnetic field with a speed of 3.890E+05 m/s. What is the period of orbit if orbital radius is 0.718 m?
- a) 8.713E-06 s
- b) 9.584E-06 s
- c) 1.054E-05 s
- d) 1.160E-05 s
- e) 1.276E-05 s
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.409 m and a magneticfield of 1.27 T. What is their maximum kinetic energy?
- a) 8.881E+00 MeV
- b) 9.769E+00 MeV
- c) 1.075E+01 MeV
- d) 1.182E+01 MeV
- e) 1.300E+01 MeV
3) A 11 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.809 T. What current is required to maintain this balance?
- a) 1.432E+00 A
- b) 1.575E+00 A
- c) 1.732E+00 A
- d) 1.905E+00 A
- e) 2.096E+00 A
4) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.61 T magnetic field is directed 33° away from the wire?
- a) 1.510E+00 N/m
- b) 1.661E+00 N/m
- c) 1.827E+00 N/m
- d) 2.010E+00 N/m
- e) 2.211E+00 N/m
c11 L0
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.232 m and a magneticfield of 1.1 T. What is their maximum kinetic energy?
- a) 2.853E+00 MeV
- b) 3.139E+00 MeV
- c) 3.453E+00 MeV
- d) 3.798E+00 MeV
- e) 4.178E+00 MeV
2) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.379 T magnetic field is directed 53° away from the wire?
- a) 1.001E+00 N/m
- b) 1.101E+00 N/m
- c) 1.211E+00 N/m
- d) 1.332E+00 N/m
- e) 1.465E+00 N/m
3) A charged particle in a magnetic field of 2.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.120E+05 m/s. What is the period of orbit if orbital radius is 0.385 m?
- a) 1.141E-05 s
- b) 1.255E-05 s
- c) 1.381E-05 s
- d) 1.519E-05 s
- e) 1.671E-05 s
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 9.76 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.97 i + 8.52 j + 9.46 k) x 104 m/s?
- a) 2.199E-13 N
- b) 2.419E-13 N
- c) 2.661E-13 N
- d) 2.927E-13 N
- e) 3.220E-13 N
c11 L1
[edit | edit source]1) A long rigind wire carries a 6 A current. What is the magnetic force per unit length on the wire if a 0.504 T magnetic field is directed 70° away from the wire?
- a) 2.348E+00 N/m
- b) 2.583E+00 N/m
- c) 2.842E+00 N/m
- d) 3.126E+00 N/m
- e) 3.438E+00 N/m
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.22 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(2.85 i + 1.28 j + 8.49 k) x 104 m/s?
- a) 2.222E-14 N
- b) 2.444E-14 N
- c) 2.688E-14 N
- d) 2.957E-14 N
- e) 3.253E-14 N
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- a) 2.875E+00 MeV
- b) 3.162E+00 MeV
- c) 3.479E+00 MeV
- d) 3.827E+00 MeV
- e) 4.209E+00 MeV
4) A charged particle in a magnetic field of 4.970E-04 T is moving perpendicular to the magnetic field with a speed of 2.950E+05 m/s. What is the period of orbit if orbital radius is 0.344 m?
- a) 7.327E-06 s
- b) 8.060E-06 s
- c) 8.865E-06 s
- d) 9.752E-06 s
- e) 1.073E-05 s
c11 L2
[edit | edit source]1) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.83 T magnetic field is directed 22° away from the wire?
- a) 1.062E+00 N/m
- b) 1.168E+00 N/m
- c) 1.285E+00 N/m
- d) 1.413E+00 N/m
- e) 1.555E+00 N/m
2) A charged particle in a magnetic field of 3.600E-04 T is moving perpendicular to the magnetic field with a speed of 5.960E+05 m/s. What is the period of orbit if orbital radius is 0.397 m?
- a) 3.805E-06 s
- b) 4.185E-06 s
- c) 4.604E-06 s
- d) 5.064E-06 s
- e) 5.571E-06 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.419 m and a magneticfield of 1.45 T. What is their maximum kinetic energy?
- a) 1.336E+01 MeV
- b) 1.470E+01 MeV
- c) 1.617E+01 MeV
- d) 1.779E+01 MeV
- e) 1.957E+01 MeV
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 1.21 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(2.75 i + 9.06 j + 3.5 k) x 104 m/s?
- a) 2.899E-14 N
- b) 3.189E-14 N
- c) 3.508E-14 N
- d) 3.859E-14 N
- e) 4.245E-14 N
c11 M0
[edit | edit source]1) A circular current loop of radius 1.88 cm carries a current of 3.41 mA. What is the magnitude of the torque if the dipole is oriented at 62 ° to a uniform magnetic fied of 0.415 T?
- a) 1.387E-06 N m
- b) 1.526E-06 N m
- c) 1.679E-06 N m
- d) 1.847E-06 N m
- e) 2.031E-06 N m
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0108 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- a) 1.940E-06 s
- b) 2.134E-06 s
- c) 2.347E-06 s
- d) 2.582E-06 s
- e) 2.840E-06 s
3) A 96 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.325 T. What current is required to maintain this balance?
- a) 2.596E-01 A
- b) 2.855E-01 A
- c) 3.141E-01 A
- d) 3.455E-01 A
- e) 3.801E-01 A
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.16 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.13 i + 3.24 j + 6.96 k) x 104 m/s?
- a) 7.691E-14 N
- b) 8.460E-14 N
- c) 9.306E-14 N
- d) 1.024E-13 N
- e) 1.126E-13 N
c11 M1
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0327 T . It emerges after being deflected by 89° from its original direction. How much time did it spend in that magnetic field?
- a) 9.857E-07 s
- b) 1.084E-06 s
- c) 1.193E-06 s
- d) 1.312E-06 s
- e) 1.443E-06 s
2) A 34 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.348 T. What current is required to maintain this balance?
- a) 6.626E-01 A
- b) 7.289E-01 A
- c) 8.018E-01 A
- d) 8.819E-01 A
- e) 9.701E-01 A
3) A circular current loop of radius 1.63 cm carries a current of 2.38 mA. What is the magnitude of the torque if the dipole is oriented at 54 ° to a uniform magnetic fied of 0.125 T?
- a) 2.009E-07 N m
- b) 2.210E-07 N m
- c) 2.431E-07 N m
- d) 2.674E-07 N m
- e) 2.941E-07 N m
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 9.76 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.97 i + 8.52 j + 9.46 k) x 104 m/s?
- a) 2.199E-13 N
- b) 2.419E-13 N
- c) 2.661E-13 N
- d) 2.927E-13 N
- e) 3.220E-13 N
c11 M2
[edit | edit source]1) A circular current loop of radius 1.67 cm carries a current of 3.81 mA. What is the magnitude of the torque if the dipole is oriented at 40 ° to a uniform magnetic fied of 0.884 T?
- a) 1.568E-06 N m
- b) 1.724E-06 N m
- c) 1.897E-06 N m
- d) 2.087E-06 N m
- e) 2.295E-06 N m
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.061 T . It emerges after being deflected by 75° from its original direction. How much time did it spend in that magnetic field?
- a) 4.453E-07 s
- b) 4.898E-07 s
- c) 5.388E-07 s
- d) 5.927E-07 s
- e) 6.519E-07 s
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.62 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.7 i + 2.31 j + 7.08 k) x 104 m/s?
- a) 1.828E-14 N
- b) 2.010E-14 N
- c) 2.211E-14 N
- d) 2.433E-14 N
- e) 2.676E-14 N
4) A 34 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.348 T. What current is required to maintain this balance?
- a) 6.626E-01 A
- b) 7.289E-01 A
- c) 8.018E-01 A
- d) 8.819E-01 A
- e) 9.701E-01 A
c11 N0
[edit | edit source]- a) 1.080E-06 V
- b) 1.188E-06 V
- c) 1.306E-06 V
- d) 1.437E-06 V
- e) 1.581E-06 V
2) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.851 T magnetic field is directed 65° away from the wire?
- a) 4.908E+00 N/m
- b) 5.399E+00 N/m
- c) 5.939E+00 N/m
- d) 6.533E+00 N/m
- e) 7.186E+00 N/m
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.16 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.13 i + 3.24 j + 6.96 k) x 104 m/s?
- a) 7.691E-14 N
- b) 8.460E-14 N
- c) 9.306E-14 N
- d) 1.024E-13 N
- e) 1.126E-13 N
4) A 27 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.85 T. What current is required to maintain this balance?
- a) 3.106E-01 A
- b) 3.416E-01 A
- c) 3.758E-01 A
- d) 4.134E-01 A
- e) 4.547E-01 A
c11 N1
[edit | edit source]- a) 6.104E-06 V
- b) 6.714E-06 V
- c) 7.385E-06 V
- d) 8.124E-06 V
- e) 8.936E-06 V
2) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- a) 2.417E+00 N/m
- b) 2.659E+00 N/m
- c) 2.924E+00 N/m
- d) 3.217E+00 N/m
- e) 3.539E+00 N/m
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.16 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.13 i + 3.24 j + 6.96 k) x 104 m/s?
- a) 7.691E-14 N
- b) 8.460E-14 N
- c) 9.306E-14 N
- d) 1.024E-13 N
- e) 1.126E-13 N
4) A 44 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.784 T. What current is required to maintain this balance?
- a) 1.644E-01 A
- b) 1.808E-01 A
- c) 1.989E-01 A
- d) 2.188E-01 A
- e) 2.406E-01 A
c11 N2
[edit | edit source]1) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.61 T magnetic field is directed 33° away from the wire?
- a) 1.510E+00 N/m
- b) 1.661E+00 N/m
- c) 1.827E+00 N/m
- d) 2.010E+00 N/m
- e) 2.211E+00 N/m
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.41 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.21 i + 5.39 j + 3.81 k) x 104 m/s?
- a) 4.419E-14 N
- b) 4.861E-14 N
- c) 5.347E-14 N
- d) 5.882E-14 N
- e) 6.470E-14 N
- a) 7.202E-06 V
- b) 7.922E-06 V
- c) 8.714E-06 V
- d) 9.586E-06 V
- e) 1.054E-05 V
4) A 96 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.325 T. What current is required to maintain this balance?
- a) 2.596E-01 A
- b) 2.855E-01 A
- c) 3.141E-01 A
- d) 3.455E-01 A
- e) 3.801E-01 A
c11 O0
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 6.97 mT and 2.240E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 2.656E+05 m/s
- b) 2.922E+05 m/s
- c) 3.214E+05 m/s
- d) 3.535E+05 m/s
- e) 3.889E+05 m/s
2) A charged particle in a magnetic field of 4.660E-04 T is moving perpendicular to the magnetic field with a speed of 7.720E+05 m/s. What is the period of orbit if orbital radius is 0.747 m?
- a) 6.080E-06 s
- b) 6.688E-06 s
- c) 7.356E-06 s
- d) 8.092E-06 s
- e) 8.901E-06 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.419 m and a magneticfield of 1.45 T. What is their maximum kinetic energy?
- a) 1.336E+01 MeV
- b) 1.470E+01 MeV
- c) 1.617E+01 MeV
- d) 1.779E+01 MeV
- e) 1.957E+01 MeV
- a) 6.795E-06 V
- b) 7.475E-06 V
- c) 8.222E-06 V
- d) 9.045E-06 V
- e) 9.949E-06 V
c11 O1
[edit | edit source]- a) 9.015E-06 V
- b) 9.916E-06 V
- c) 1.091E-05 V
- d) 1.200E-05 V
- e) 1.320E-05 V
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.355 m and a magneticfield of 1.28 T. What is their maximum kinetic energy?
- a) 7.476E+00 MeV
- b) 8.224E+00 MeV
- c) 9.046E+00 MeV
- d) 9.951E+00 MeV
- e) 1.095E+01 MeV
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.88 mT and 7.340E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.504E+06 m/s
- b) 1.655E+06 m/s
- c) 1.820E+06 m/s
- d) 2.002E+06 m/s
- e) 2.202E+06 m/s
4) A charged particle in a magnetic field of 2.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.120E+05 m/s. What is the period of orbit if orbital radius is 0.385 m?
- a) 1.141E-05 s
- b) 1.255E-05 s
- c) 1.381E-05 s
- d) 1.519E-05 s
- e) 1.671E-05 s
c11 O2
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.409 m and a magneticfield of 1.27 T. What is their maximum kinetic energy?
- a) 8.881E+00 MeV
- b) 9.769E+00 MeV
- c) 1.075E+01 MeV
- d) 1.182E+01 MeV
- e) 1.300E+01 MeV
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.85 mT and 3.760E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 4.829E+05 m/s
- b) 5.312E+05 m/s
- c) 5.843E+05 m/s
- d) 6.427E+05 m/s
- e) 7.070E+05 m/s
- a) 1.209E-06 V
- b) 1.329E-06 V
- c) 1.462E-06 V
- d) 1.609E-06 V
- e) 1.770E-06 V
4) A charged particle in a magnetic field of 5.500E-04 T is moving perpendicular to the magnetic field with a speed of 2.930E+05 m/s. What is the period of orbit if orbital radius is 0.787 m?
- a) 1.688E-05 s
- b) 1.856E-05 s
- c) 2.042E-05 s
- d) 2.246E-05 s
- e) 2.471E-05 s
c11 P0
[edit | edit source]1) A circular current loop of radius 2.48 cm carries a current of 3.67 mA. What is the magnitude of the torque if the dipole is oriented at 21 ° to a uniform magnetic fied of 0.402 T?
- a) 1.022E-06 N m
- b) 1.124E-06 N m
- c) 1.236E-06 N m
- d) 1.360E-06 N m
- e) 1.496E-06 N m
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.04 mT and 7.820E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.060E+06 m/s
- b) 1.166E+06 m/s
- c) 1.282E+06 m/s
- d) 1.411E+06 m/s
- e) 1.552E+06 m/s
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 6.96 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(7.01 i + 5.35 j + 2.07 k) x 104 m/s?
- a) 1.192E-13 N
- b) 1.311E-13 N
- c) 1.442E-13 N
- d) 1.586E-13 N
- e) 1.745E-13 N
- a) 6.795E-06 V
- b) 7.475E-06 V
- c) 8.222E-06 V
- d) 9.045E-06 V
- e) 9.949E-06 V
c11 P1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.43 mT and 4.670E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.362E+06 m/s
- b) 1.498E+06 m/s
- c) 1.647E+06 m/s
- d) 1.812E+06 m/s
- e) 1.993E+06 m/s
2) A circular current loop of radius 1.59 cm carries a current of 1.13 mA. What is the magnitude of the torque if the dipole is oriented at 41 ° to a uniform magnetic fied of 0.189 T?
- a) 1.113E-07 N m
- b) 1.224E-07 N m
- c) 1.347E-07 N m
- d) 1.481E-07 N m
- e) 1.629E-07 N m
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 9.76 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.97 i + 8.52 j + 9.46 k) x 104 m/s?
- a) 2.199E-13 N
- b) 2.419E-13 N
- c) 2.661E-13 N
- d) 2.927E-13 N
- e) 3.220E-13 N
- a) 6.100E-06 V
- b) 6.710E-06 V
- c) 7.381E-06 V
- d) 8.120E-06 V
- e) 8.931E-06 V
c11 P2
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 7.67 mT and 4.260E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 5.554E+05 m/s
- b) 6.110E+05 m/s
- c) 6.720E+05 m/s
- d) 7.393E+05 m/s
- e) 8.132E+05 m/s
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.41 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.21 i + 5.39 j + 3.81 k) x 104 m/s?
- a) 4.419E-14 N
- b) 4.861E-14 N
- c) 5.347E-14 N
- d) 5.882E-14 N
- e) 6.470E-14 N
3) A circular current loop of radius 3.25 cm carries a current of 2.78 mA. What is the magnitude of the torque if the dipole is oriented at 55 ° to a uniform magnetic fied of 0.523 T?
- a) 2.699E-06 N m
- b) 2.969E-06 N m
- c) 3.266E-06 N m
- d) 3.593E-06 N m
- e) 3.952E-06 N m
- a) 2.275E-06 V
- b) 2.502E-06 V
- c) 2.752E-06 V
- d) 3.027E-06 V
- e) 3.330E-06 V
c11 Q0
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.43 mT and 4.670E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.362E+06 m/s
- b) 1.498E+06 m/s
- c) 1.647E+06 m/s
- d) 1.812E+06 m/s
- e) 1.993E+06 m/s
- a) 1.322E-06 V
- b) 1.454E-06 V
- c) 1.600E-06 V
- d) 1.759E-06 V
- e) 1.935E-06 V
3) A 72 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 14 g, and the magnitude of the magnetic field is 0.54 T. What current is required to maintain this balance?
- a) 2.651E-01 A
- b) 2.916E-01 A
- c) 3.208E-01 A
- d) 3.529E-01 A
- e) 3.882E-01 A
4) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.265 T magnetic field is directed 26° away from the wire?
- a) 3.840E-01 N/m
- b) 4.224E-01 N/m
- c) 4.647E-01 N/m
- d) 5.111E-01 N/m
- e) 5.623E-01 N/m
c11 Q1
[edit | edit source]1) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.61 T magnetic field is directed 33° away from the wire?
- a) 1.510E+00 N/m
- b) 1.661E+00 N/m
- c) 1.827E+00 N/m
- d) 2.010E+00 N/m
- e) 2.211E+00 N/m
2) A 27 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.85 T. What current is required to maintain this balance?
- a) 3.106E-01 A
- b) 3.416E-01 A
- c) 3.758E-01 A
- d) 4.134E-01 A
- e) 4.547E-01 A
- a) 9.911E-06 V
- b) 1.090E-05 V
- c) 1.199E-05 V
- d) 1.319E-05 V
- e) 1.451E-05 V
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.43 mT and 4.670E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.362E+06 m/s
- b) 1.498E+06 m/s
- c) 1.647E+06 m/s
- d) 1.812E+06 m/s
- e) 1.993E+06 m/s
c11 Q2
[edit | edit source]1) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.379 T magnetic field is directed 53° away from the wire?
- a) 1.001E+00 N/m
- b) 1.101E+00 N/m
- c) 1.211E+00 N/m
- d) 1.332E+00 N/m
- e) 1.465E+00 N/m
- a) 1.322E-06 V
- b) 1.454E-06 V
- c) 1.600E-06 V
- d) 1.759E-06 V
- e) 1.935E-06 V
3) A 27 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.85 T. What current is required to maintain this balance?
- a) 3.106E-01 A
- b) 3.416E-01 A
- c) 3.758E-01 A
- d) 4.134E-01 A
- e) 4.547E-01 A
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.34 mT and 7.430E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.671E+06 m/s
- b) 1.838E+06 m/s
- c) 2.022E+06 m/s
- d) 2.225E+06 m/s
- e) 2.447E+06 m/s
c11 R0
[edit | edit source]1) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.394 T magnetic field is directed 14° away from the wire?
- a) 6.302E-01 N/m
- b) 6.932E-01 N/m
- c) 7.625E-01 N/m
- d) 8.388E-01 N/m
- e) 9.227E-01 N/m
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 7.67 mT and 4.260E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 5.554E+05 m/s
- b) 6.110E+05 m/s
- c) 6.720E+05 m/s
- d) 7.393E+05 m/s
- e) 8.132E+05 m/s
3) A circular current loop of radius 1.94 cm carries a current of 1.83 mA. What is the magnitude of the torque if the dipole is oriented at 43 ° to a uniform magnetic fied of 0.156 T?
- a) 1.903E-07 N m
- b) 2.093E-07 N m
- c) 2.302E-07 N m
- d) 2.532E-07 N m
- e) 2.785E-07 N m
4) A 96 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.325 T. What current is required to maintain this balance?
- a) 2.596E-01 A
- b) 2.855E-01 A
- c) 3.141E-01 A
- d) 3.455E-01 A
- e) 3.801E-01 A
c11 R1
[edit | edit source]1) A 33 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.869 T. What current is required to maintain this balance?
- a) 2.259E-01 A
- b) 2.485E-01 A
- c) 2.734E-01 A
- d) 3.007E-01 A
- e) 3.308E-01 A
2) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.265 T magnetic field is directed 26° away from the wire?
- a) 3.840E-01 N/m
- b) 4.224E-01 N/m
- c) 4.647E-01 N/m
- d) 5.111E-01 N/m
- e) 5.623E-01 N/m
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 1.85 mT and 5.080E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 2.746E+06 m/s
- b) 3.021E+06 m/s
- c) 3.323E+06 m/s
- d) 3.655E+06 m/s
- e) 4.020E+06 m/s
4) A circular current loop of radius 2.84 cm carries a current of 3.01 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.174 T?
- a) 1.075E-06 N m
- b) 1.182E-06 N m
- c) 1.301E-06 N m
- d) 1.431E-06 N m
- e) 1.574E-06 N m
c11 R2
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.59 mT and 4.340E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.676E+06 m/s
- b) 1.843E+06 m/s
- c) 2.028E+06 m/s
- d) 2.230E+06 m/s
- e) 2.453E+06 m/s
2) A 44 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.784 T. What current is required to maintain this balance?
- a) 1.644E-01 A
- b) 1.808E-01 A
- c) 1.989E-01 A
- d) 2.188E-01 A
- e) 2.406E-01 A
3) A circular current loop of radius 3.25 cm carries a current of 2.78 mA. What is the magnitude of the torque if the dipole is oriented at 55 ° to a uniform magnetic fied of 0.523 T?
- a) 2.699E-06 N m
- b) 2.969E-06 N m
- c) 3.266E-06 N m
- d) 3.593E-06 N m
- e) 3.952E-06 N m
4) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.394 T magnetic field is directed 14° away from the wire?
- a) 6.302E-01 N/m
- b) 6.932E-01 N/m
- c) 7.625E-01 N/m
- d) 8.388E-01 N/m
- e) 9.227E-01 N/m
c11 S0
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.413 m and a magneticfield of 0.988 T. What is their maximum kinetic energy?
- a) 6.029E+00 MeV
- b) 6.631E+00 MeV
- c) 7.295E+00 MeV
- d) 8.024E+00 MeV
- e) 8.827E+00 MeV
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.49 mT and 5.570E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 9.223E+05 m/s
- b) 1.015E+06 m/s
- c) 1.116E+06 m/s
- d) 1.228E+06 m/s
- e) 1.350E+06 m/s
- a) 1.209E-06 V
- b) 1.329E-06 V
- c) 1.462E-06 V
- d) 1.609E-06 V
- e) 1.770E-06 V
4) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.851 T magnetic field is directed 65° away from the wire?
- a) 4.908E+00 N/m
- b) 5.399E+00 N/m
- c) 5.939E+00 N/m
- d) 6.533E+00 N/m
- e) 7.186E+00 N/m
c11 S1
[edit | edit source]1) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.893 T magnetic field is directed 66° away from the wire?
- a) 2.697E+00 N/m
- b) 2.967E+00 N/m
- c) 3.263E+00 N/m
- d) 3.590E+00 N/m
- e) 3.948E+00 N/m
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- a) 2.875E+00 MeV
- b) 3.162E+00 MeV
- c) 3.479E+00 MeV
- d) 3.827E+00 MeV
- e) 4.209E+00 MeV
- a) 6.104E-06 V
- b) 6.714E-06 V
- c) 7.385E-06 V
- d) 8.124E-06 V
- e) 8.936E-06 V
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.13 mT and 2.810E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 6.804E+05 m/s
- b) 7.484E+05 m/s
- c) 8.233E+05 m/s
- d) 9.056E+05 m/s
- e) 9.962E+05 m/s
c11 S2
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.118 m and a magneticfield of 1.48 T. What is their maximum kinetic energy?
- a) 1.004E+00 MeV
- b) 1.104E+00 MeV
- c) 1.215E+00 MeV
- d) 1.336E+00 MeV
- e) 1.470E+00 MeV
2) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.394 T magnetic field is directed 14° away from the wire?
- a) 6.302E-01 N/m
- b) 6.932E-01 N/m
- c) 7.625E-01 N/m
- d) 8.388E-01 N/m
- e) 9.227E-01 N/m
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.15 mT and 4.440E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.070E+06 m/s
- b) 1.177E+06 m/s
- c) 1.295E+06 m/s
- d) 1.424E+06 m/s
- e) 1.566E+06 m/s
- a) 1.209E-06 V
- b) 1.329E-06 V
- c) 1.462E-06 V
- d) 1.609E-06 V
- e) 1.770E-06 V
c11 T0
[edit | edit source]1) A charged particle in a magnetic field of 4.480E-04 T is moving perpendicular to the magnetic field with a speed of 7.700E+05 m/s. What is the period of orbit if orbital radius is 0.368 m?
- a) 2.730E-06 s
- b) 3.003E-06 s
- c) 3.303E-06 s
- d) 3.633E-06 s
- e) 3.997E-06 s
2) A circular current loop of radius 2.1 cm carries a current of 5.02 mA. What is the magnitude of the torque if the dipole is oriented at 26 ° to a uniform magnetic fied of 0.184 T?
- a) 5.610E-07 N m
- b) 6.171E-07 N m
- c) 6.788E-07 N m
- d) 7.467E-07 N m
- e) 8.213E-07 N m
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.62 mT and 2.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 8.092E+05 m/s
- b) 8.901E+05 m/s
- c) 9.791E+05 m/s
- d) 1.077E+06 m/s
- e) 1.185E+06 m/s
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 4.91 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(4.96 i + 6.81 j + 8.66 k) x 104 m/s?
- a) 9.727E-14 N
- b) 1.070E-13 N
- c) 1.177E-13 N
- d) 1.295E-13 N
- e) 1.424E-13 N
c11 T1
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.23 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(3.84 i + 8.79 j + 9.05 k) x 104 m/s?
- a) 7.509E-14 N
- b) 8.259E-14 N
- c) 9.085E-14 N
- d) 9.994E-14 N
- e) 1.099E-13 N
2) A charged particle in a magnetic field of 1.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.330E+05 m/s. What is the period of orbit if orbital radius is 0.893 m?
- a) 2.189E-05 s
- b) 2.408E-05 s
- c) 2.649E-05 s
- d) 2.914E-05 s
- e) 3.205E-05 s
3) A circular current loop of radius 2.21 cm carries a current of 1.43 mA. What is the magnitude of the torque if the dipole is oriented at 67 ° to a uniform magnetic fied of 0.276 T?
- a) 4.188E-07 N m
- b) 4.607E-07 N m
- c) 5.068E-07 N m
- d) 5.574E-07 N m
- e) 6.132E-07 N m
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.46 mT and 1.710E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 3.132E+05 m/s
- b) 3.445E+05 m/s
- c) 3.790E+05 m/s
- d) 4.169E+05 m/s
- e) 4.585E+05 m/s
c11 T2
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 4.91 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(4.96 i + 6.81 j + 8.66 k) x 104 m/s?
- a) 9.727E-14 N
- b) 1.070E-13 N
- c) 1.177E-13 N
- d) 1.295E-13 N
- e) 1.424E-13 N
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.43 mT and 4.670E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.362E+06 m/s
- b) 1.498E+06 m/s
- c) 1.647E+06 m/s
- d) 1.812E+06 m/s
- e) 1.993E+06 m/s
3) A circular current loop of radius 3.0 cm carries a current of 1.58 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.408 T?
- a) 1.476E-06 N m
- b) 1.624E-06 N m
- c) 1.786E-06 N m
- d) 1.965E-06 N m
- e) 2.162E-06 N m
4) A charged particle in a magnetic field of 3.600E-04 T is moving perpendicular to the magnetic field with a speed of 5.960E+05 m/s. What is the period of orbit if orbital radius is 0.397 m?
- a) 3.805E-06 s
- b) 4.185E-06 s
- c) 4.604E-06 s
- d) 5.064E-06 s
- e) 5.571E-06 s
c11 U0
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.436 m and a magneticfield of 0.881 T. What is their maximum kinetic energy?
- a) 5.342E+00 MeV
- b) 5.877E+00 MeV
- c) 6.464E+00 MeV
- d) 7.111E+00 MeV
- e) 7.822E+00 MeV
2) A 25 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.702 T. What current is required to maintain this balance?
- a) 5.076E-01 A
- b) 5.584E-01 A
- c) 6.142E-01 A
- d) 6.757E-01 A
- e) 7.432E-01 A
- a) 1.322E-06 V
- b) 1.454E-06 V
- c) 1.600E-06 V
- d) 1.759E-06 V
- e) 1.935E-06 V
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.22 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(2.85 i + 1.28 j + 8.49 k) x 104 m/s?
- a) 2.222E-14 N
- b) 2.444E-14 N
- c) 2.688E-14 N
- d) 2.957E-14 N
- e) 3.253E-14 N
c11 U1
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.409 m and a magneticfield of 1.27 T. What is their maximum kinetic energy?
- a) 8.881E+00 MeV
- b) 9.769E+00 MeV
- c) 1.075E+01 MeV
- d) 1.182E+01 MeV
- e) 1.300E+01 MeV
- a) 7.153E-07 V
- b) 7.869E-07 V
- c) 8.655E-07 V
- d) 9.521E-07 V
- e) 1.047E-06 V
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 4.6 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.92 i + 1.55 j + 6.22 k) x 104 m/s?
- a) 2.074E-14 N
- b) 2.282E-14 N
- c) 2.510E-14 N
- d) 2.761E-14 N
- e) 3.037E-14 N
4) A 11 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.809 T. What current is required to maintain this balance?
- a) 1.432E+00 A
- b) 1.575E+00 A
- c) 1.732E+00 A
- d) 1.905E+00 A
- e) 2.096E+00 A
c11 U2
[edit | edit source]1) A 62 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.351 T. What current is required to maintain this balance?
- a) 3.999E-01 A
- b) 4.398E-01 A
- c) 4.838E-01 A
- d) 5.322E-01 A
- e) 5.854E-01 A
- a) 7.202E-06 V
- b) 7.922E-06 V
- c) 8.714E-06 V
- d) 9.586E-06 V
- e) 1.054E-05 V
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 9.76 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.97 i + 8.52 j + 9.46 k) x 104 m/s?
- a) 2.199E-13 N
- b) 2.419E-13 N
- c) 2.661E-13 N
- d) 2.927E-13 N
- e) 3.220E-13 N
4) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- a) 2.875E+00 MeV
- b) 3.162E+00 MeV
- c) 3.479E+00 MeV
- d) 3.827E+00 MeV
- e) 4.209E+00 MeV
c11 V0
[edit | edit source]1) A 96 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.325 T. What current is required to maintain this balance?
- a) 2.596E-01 A
- b) 2.855E-01 A
- c) 3.141E-01 A
- d) 3.455E-01 A
- e) 3.801E-01 A
2) A charged particle in a magnetic field of 4.090E-04 T is moving perpendicular to the magnetic field with a speed of 5.980E+05 m/s. What is the period of orbit if orbital radius is 0.633 m?
- a) 4.543E-06 s
- b) 4.997E-06 s
- c) 5.497E-06 s
- d) 6.046E-06 s
- e) 6.651E-06 s
- a) 6.100E-06 V
- b) 6.710E-06 V
- c) 7.381E-06 V
- d) 8.120E-06 V
- e) 8.931E-06 V
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0108 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- a) 1.940E-06 s
- b) 2.134E-06 s
- c) 2.347E-06 s
- d) 2.582E-06 s
- e) 2.840E-06 s
c11 V1
[edit | edit source]- a) 8.660E-06 V
- b) 9.526E-06 V
- c) 1.048E-05 V
- d) 1.153E-05 V
- e) 1.268E-05 V
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- a) 4.791E-07 s
- b) 5.271E-07 s
- c) 5.798E-07 s
- d) 6.377E-07 s
- e) 7.015E-07 s
3) A 72 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 14 g, and the magnitude of the magnetic field is 0.54 T. What current is required to maintain this balance?
- a) 2.651E-01 A
- b) 2.916E-01 A
- c) 3.208E-01 A
- d) 3.529E-01 A
- e) 3.882E-01 A
4) A charged particle in a magnetic field of 4.970E-04 T is moving perpendicular to the magnetic field with a speed of 2.950E+05 m/s. What is the period of orbit if orbital radius is 0.344 m?
- a) 7.327E-06 s
- b) 8.060E-06 s
- c) 8.865E-06 s
- d) 9.752E-06 s
- e) 1.073E-05 s
c11 V2
[edit | edit source]1) A charged particle in a magnetic field of 3.410E-04 T is moving perpendicular to the magnetic field with a speed of 5.010E+05 m/s. What is the period of orbit if orbital radius is 0.508 m?
- a) 5.792E-06 s
- b) 6.371E-06 s
- c) 7.008E-06 s
- d) 7.709E-06 s
- e) 8.480E-06 s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0631 T . It emerges after being deflected by 44° from its original direction. How much time did it spend in that magnetic field?
- a) 1.897E-07 s
- b) 2.087E-07 s
- c) 2.296E-07 s
- d) 2.525E-07 s
- e) 2.778E-07 s
3) A 76 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.367 T. What current is required to maintain this balance?
- a) 3.432E-01 A
- b) 3.775E-01 A
- c) 4.152E-01 A
- d) 4.568E-01 A
- e) 5.024E-01 A
- a) 9.911E-06 V
- b) 1.090E-05 V
- c) 1.199E-05 V
- d) 1.319E-05 V
- e) 1.451E-05 V
c11 W0
[edit | edit source]- a) 5.685E-06 V
- b) 6.253E-06 V
- c) 6.878E-06 V
- d) 7.566E-06 V
- e) 8.323E-06 V
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- a) 2.875E+00 MeV
- b) 3.162E+00 MeV
- c) 3.479E+00 MeV
- d) 3.827E+00 MeV
- e) 4.209E+00 MeV
3) A circular current loop of radius 2.1 cm carries a current of 5.02 mA. What is the magnitude of the torque if the dipole is oriented at 26 ° to a uniform magnetic fied of 0.184 T?
- a) 5.610E-07 N m
- b) 6.171E-07 N m
- c) 6.788E-07 N m
- d) 7.467E-07 N m
- e) 8.213E-07 N m
4) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.394 T magnetic field is directed 14° away from the wire?
- a) 6.302E-01 N/m
- b) 6.932E-01 N/m
- c) 7.625E-01 N/m
- d) 8.388E-01 N/m
- e) 9.227E-01 N/m
c11 W1
[edit | edit source]- a) 9.015E-06 V
- b) 9.916E-06 V
- c) 1.091E-05 V
- d) 1.200E-05 V
- e) 1.320E-05 V
2) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.405 T magnetic field is directed 48° away from the wire?
- a) 1.131E+00 N/m
- b) 1.244E+00 N/m
- c) 1.368E+00 N/m
- d) 1.505E+00 N/m
- e) 1.655E+00 N/m
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.157 m and a magneticfield of 0.512 T. What is their maximum kinetic energy?
- a) 2.574E-01 MeV
- b) 2.831E-01 MeV
- c) 3.114E-01 MeV
- d) 3.425E-01 MeV
- e) 3.768E-01 MeV
4) A circular current loop of radius 1.56 cm carries a current of 2.57 mA. What is the magnitude of the torque if the dipole is oriented at 38 ° to a uniform magnetic fied of 0.79 T?
- a) 7.898E-07 N m
- b) 8.688E-07 N m
- c) 9.557E-07 N m
- d) 1.051E-06 N m
- e) 1.156E-06 N m
c11 W2
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.44 m and a magneticfield of 1.31 T. What is their maximum kinetic energy?
- a) 1.323E+01 MeV
- b) 1.456E+01 MeV
- c) 1.601E+01 MeV
- d) 1.761E+01 MeV
- e) 1.937E+01 MeV
2) A circular current loop of radius 2.1 cm carries a current of 5.02 mA. What is the magnitude of the torque if the dipole is oriented at 26 ° to a uniform magnetic fied of 0.184 T?
- a) 5.610E-07 N m
- b) 6.171E-07 N m
- c) 6.788E-07 N m
- d) 7.467E-07 N m
- e) 8.213E-07 N m
3) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- a) 2.417E+00 N/m
- b) 2.659E+00 N/m
- c) 2.924E+00 N/m
- d) 3.217E+00 N/m
- e) 3.539E+00 N/m
- a) 2.275E-06 V
- b) 2.502E-06 V
- c) 2.752E-06 V
- d) 3.027E-06 V
- e) 3.330E-06 V
c11 X0
[edit | edit source]1) A charged particle in a magnetic field of 3.820E-04 T is moving perpendicular to the magnetic field with a speed of 3.890E+05 m/s. What is the period of orbit if orbital radius is 0.718 m?
- a) 8.713E-06 s
- b) 9.584E-06 s
- c) 1.054E-05 s
- d) 1.160E-05 s
- e) 1.276E-05 s
2) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.851 T magnetic field is directed 65° away from the wire?
- a) 4.908E+00 N/m
- b) 5.399E+00 N/m
- c) 5.939E+00 N/m
- d) 6.533E+00 N/m
- e) 7.186E+00 N/m
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0618 T . It emerges after being deflected by 67° from its original direction. How much time did it spend in that magnetic field?
- a) 3.245E-07 s
- b) 3.569E-07 s
- c) 3.926E-07 s
- d) 4.319E-07 s
- e) 4.751E-07 s
- a) 1.193E-06 V
- b) 1.313E-06 V
- c) 1.444E-06 V
- d) 1.588E-06 V
- e) 1.747E-06 V
c11 X1
[edit | edit source]- a) 6.100E-06 V
- b) 6.710E-06 V
- c) 7.381E-06 V
- d) 8.120E-06 V
- e) 8.931E-06 V
2) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.83 T magnetic field is directed 22° away from the wire?
- a) 1.062E+00 N/m
- b) 1.168E+00 N/m
- c) 1.285E+00 N/m
- d) 1.413E+00 N/m
- e) 1.555E+00 N/m
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0883 T . It emerges after being deflected by 74° from its original direction. How much time did it spend in that magnetic field?
- a) 2.280E-07 s
- b) 2.508E-07 s
- c) 2.759E-07 s
- d) 3.035E-07 s
- e) 3.339E-07 s
4) A charged particle in a magnetic field of 3.410E-04 T is moving perpendicular to the magnetic field with a speed of 5.010E+05 m/s. What is the period of orbit if orbital radius is 0.508 m?
- a) 5.792E-06 s
- b) 6.371E-06 s
- c) 7.008E-06 s
- d) 7.709E-06 s
- e) 8.480E-06 s
c11 X2
[edit | edit source]1) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- a) 2.417E+00 N/m
- b) 2.659E+00 N/m
- c) 2.924E+00 N/m
- d) 3.217E+00 N/m
- e) 3.539E+00 N/m
- a) 8.660E-06 V
- b) 9.526E-06 V
- c) 1.048E-05 V
- d) 1.153E-05 V
- e) 1.268E-05 V
3) A charged particle in a magnetic field of 6.400E-04 T is moving perpendicular to the magnetic field with a speed of 1.360E+05 m/s. What is the period of orbit if orbital radius is 0.751 m?
- a) 3.154E-05 s
- b) 3.470E-05 s
- c) 3.817E-05 s
- d) 4.198E-05 s
- e) 4.618E-05 s
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.061 T . It emerges after being deflected by 75° from its original direction. How much time did it spend in that magnetic field?
- a) 4.453E-07 s
- b) 4.898E-07 s
- c) 5.388E-07 s
- d) 5.927E-07 s
- e) 6.519E-07 s
c11 Y0
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.41 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.21 i + 5.39 j + 3.81 k) x 104 m/s?
- a) 4.419E-14 N
- b) 4.861E-14 N
- c) 5.347E-14 N
- d) 5.882E-14 N
- e) 6.470E-14 N
2) A 11 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.809 T. What current is required to maintain this balance?
- a) 1.432E+00 A
- b) 1.575E+00 A
- c) 1.732E+00 A
- d) 1.905E+00 A
- e) 2.096E+00 A
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.43 mT and 4.670E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.362E+06 m/s
- b) 1.498E+06 m/s
- c) 1.647E+06 m/s
- d) 1.812E+06 m/s
- e) 1.993E+06 m/s
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0108 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- a) 1.940E-06 s
- b) 2.134E-06 s
- c) 2.347E-06 s
- d) 2.582E-06 s
- e) 2.840E-06 s
c11 Y1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.59 mT and 4.340E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.676E+06 m/s
- b) 1.843E+06 m/s
- c) 2.028E+06 m/s
- d) 2.230E+06 m/s
- e) 2.453E+06 m/s
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.83 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.16 i + 2.1 j + 1.74 k) x 104 m/s?
- a) 4.783E-14 N
- b) 5.262E-14 N
- c) 5.788E-14 N
- d) 6.367E-14 N
- e) 7.003E-14 N
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0631 T . It emerges after being deflected by 44° from its original direction. How much time did it spend in that magnetic field?
- a) 1.897E-07 s
- b) 2.087E-07 s
- c) 2.296E-07 s
- d) 2.525E-07 s
- e) 2.778E-07 s
4) A 27 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.85 T. What current is required to maintain this balance?
- a) 3.106E-01 A
- b) 3.416E-01 A
- c) 3.758E-01 A
- d) 4.134E-01 A
- e) 4.547E-01 A
c11 Y2
[edit | edit source]1) A 44 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.784 T. What current is required to maintain this balance?
- a) 1.644E-01 A
- b) 1.808E-01 A
- c) 1.989E-01 A
- d) 2.188E-01 A
- e) 2.406E-01 A
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.15 mT and 4.440E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- a) 1.070E+06 m/s
- b) 1.177E+06 m/s
- c) 1.295E+06 m/s
- d) 1.424E+06 m/s
- e) 1.566E+06 m/s
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 4.69 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(8.9 i + 4.27 j + 7.52 k) x 104 m/s?
- a) 5.296E-14 N
- b) 5.826E-14 N
- c) 6.408E-14 N
- d) 7.049E-14 N
- e) 7.754E-14 N
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0887 T . It emerges after being deflected by 69° from its original direction. How much time did it spend in that magnetic field?
- a) 2.561E-07 s
- b) 2.817E-07 s
- c) 3.099E-07 s
- d) 3.409E-07 s
- e) 3.750E-07 s
c11 Z0
[edit | edit source]- a) 1.209E-06 V
- b) 1.329E-06 V
- c) 1.462E-06 V
- d) 1.609E-06 V
- e) 1.770E-06 V
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0454 T . It emerges after being deflected by 74° from its original direction. How much time did it spend in that magnetic field?
- a) 4.878E-07 s
- b) 5.366E-07 s
- c) 5.903E-07 s
- d) 6.493E-07 s
- e) 7.143E-07 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- a) 2.875E+00 MeV
- b) 3.162E+00 MeV
- c) 3.479E+00 MeV
- d) 3.827E+00 MeV
- e) 4.209E+00 MeV
4) A charged particle in a magnetic field of 1.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.330E+05 m/s. What is the period of orbit if orbital radius is 0.893 m?
- a) 2.189E-05 s
- b) 2.408E-05 s
- c) 2.649E-05 s
- d) 2.914E-05 s
- e) 3.205E-05 s
c11 Z1
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.436 m and a magneticfield of 0.881 T. What is their maximum kinetic energy?
- a) 5.342E+00 MeV
- b) 5.877E+00 MeV
- c) 6.464E+00 MeV
- d) 7.111E+00 MeV
- e) 7.822E+00 MeV
2) A charged particle in a magnetic field of 4.090E-04 T is moving perpendicular to the magnetic field with a speed of 5.980E+05 m/s. What is the period of orbit if orbital radius is 0.633 m?
- a) 4.543E-06 s
- b) 4.997E-06 s
- c) 5.497E-06 s
- d) 6.046E-06 s
- e) 6.651E-06 s
- a) 1.193E-06 V
- b) 1.313E-06 V
- c) 1.444E-06 V
- d) 1.588E-06 V
- e) 1.747E-06 V
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0243 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- a) 1.222E-06 s
- b) 1.344E-06 s
- c) 1.479E-06 s
- d) 1.627E-06 s
- e) 1.789E-06 s
c11 Z2
[edit | edit source]1) A charged particle in a magnetic field of 4.480E-04 T is moving perpendicular to the magnetic field with a speed of 7.700E+05 m/s. What is the period of orbit if orbital radius is 0.368 m?
- a) 2.730E-06 s
- b) 3.003E-06 s
- c) 3.303E-06 s
- d) 3.633E-06 s
- e) 3.997E-06 s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0887 T . It emerges after being deflected by 69° from its original direction. How much time did it spend in that magnetic field?
- a) 2.561E-07 s
- b) 2.817E-07 s
- c) 3.099E-07 s
- d) 3.409E-07 s
- e) 3.750E-07 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.388 m and a magneticfield of 1.19 T. What is their maximum kinetic energy?
- a) 8.491E+00 MeV
- b) 9.340E+00 MeV
- c) 1.027E+01 MeV
- d) 1.130E+01 MeV
- e) 1.243E+01 MeV
- a) 7.202E-06 V
- b) 7.922E-06 V
- c) 8.714E-06 V
- d) 9.586E-06 V
- e) 1.054E-05 V
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
Key: A0
[edit | edit source]1) A 25 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.702 T. What current is required to maintain this balance?
- -a) 5.076E-01 A
- +b) 5.584E-01 A
- -c) 6.142E-01 A
- -d) 6.757E-01 A
- -e) 7.432E-01 A
2) A charged particle in a magnetic field of 2.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.120E+05 m/s. What is the period of orbit if orbital radius is 0.385 m?
- +a) 1.141E-05 s
- -b) 1.255E-05 s
- -c) 1.381E-05 s
- -d) 1.519E-05 s
- -e) 1.671E-05 s
- -a) 2.275E-06 V
- +b) 2.502E-06 V
- -c) 2.752E-06 V
- -d) 3.027E-06 V
- -e) 3.330E-06 V
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0482 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- -a) 4.629E-07 s
- -b) 5.092E-07 s
- -c) 5.601E-07 s
- +d) 6.161E-07 s
- -e) 6.777E-07 s
Click these links for the keys:
Key: A1
[edit | edit source]- +a) 7.202E-06 V
- -b) 7.922E-06 V
- -c) 8.714E-06 V
- -d) 9.586E-06 V
- -e) 1.054E-05 V
2) A charged particle in a magnetic field of 4.480E-04 T is moving perpendicular to the magnetic field with a speed of 7.700E+05 m/s. What is the period of orbit if orbital radius is 0.368 m?
- -a) 2.730E-06 s
- +b) 3.003E-06 s
- -c) 3.303E-06 s
- -d) 3.633E-06 s
- -e) 3.997E-06 s
3) A 97 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.753 T. What current is required to maintain this balance?
- -a) 7.056E-02 A
- -b) 7.762E-02 A
- -c) 8.538E-02 A
- +d) 9.392E-02 A
- -e) 1.033E-01 A
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0775 T . It emerges after being deflected by 73° from its original direction. How much time did it spend in that magnetic field?
- -a) 2.819E-07 s
- -b) 3.101E-07 s
- +c) 3.411E-07 s
- -d) 3.752E-07 s
- -e) 4.128E-07 s
Click these links for the keys:
Key: A2
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0837 T . It emerges after being deflected by 41° from its original direction. How much time did it spend in that magnetic field?
- -a) 1.212E-07 s
- -b) 1.333E-07 s
- -c) 1.466E-07 s
- -d) 1.613E-07 s
- +e) 1.774E-07 s
- +a) 7.202E-06 V
- -b) 7.922E-06 V
- -c) 8.714E-06 V
- -d) 9.586E-06 V
- -e) 1.054E-05 V
3) A 11 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.809 T. What current is required to maintain this balance?
- +a) 1.432E+00 A
- -b) 1.575E+00 A
- -c) 1.732E+00 A
- -d) 1.905E+00 A
- -e) 2.096E+00 A
4) A charged particle in a magnetic field of 6.400E-04 T is moving perpendicular to the magnetic field with a speed of 1.360E+05 m/s. What is the period of orbit if orbital radius is 0.751 m?
- -a) 3.154E-05 s
- +b) 3.470E-05 s
- -c) 3.817E-05 s
- -d) 4.198E-05 s
- -e) 4.618E-05 s
Click these links for the keys:
Key: B0
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.41 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.21 i + 5.39 j + 3.81 k) x 104 m/s?
- -a) 4.419E-14 N
- -b) 4.861E-14 N
- -c) 5.347E-14 N
- +d) 5.882E-14 N
- -e) 6.470E-14 N
2) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.761 T magnetic field is directed 44° away from the wire?
- -a) 2.527E+00 N/m
- -b) 2.780E+00 N/m
- -c) 3.058E+00 N/m
- -d) 3.364E+00 N/m
- +e) 3.700E+00 N/m
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- -a) 2.875E+00 MeV
- -b) 3.162E+00 MeV
- -c) 3.479E+00 MeV
- -d) 3.827E+00 MeV
- +e) 4.209E+00 MeV
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.96 mT and 2.010E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 2.768E+05 m/s
- -b) 3.045E+05 m/s
- -c) 3.349E+05 m/s
- -d) 3.684E+05 m/s
- +e) 4.052E+05 m/s
Click these links for the keys:
Key: B1
[edit | edit source]1) A long rigind wire carries a 6 A current. What is the magnetic force per unit length on the wire if a 0.222 T magnetic field is directed 23° away from the wire?
- +a) 5.205E-01 N/m
- -b) 5.725E-01 N/m
- -c) 6.297E-01 N/m
- -d) 6.927E-01 N/m
- -e) 7.620E-01 N/m
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.55 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.96 i + 1.68 j + 6.92 k) x 104 m/s?
- -a) 4.179E-14 N
- +b) 4.596E-14 N
- -c) 5.056E-14 N
- -d) 5.562E-14 N
- -e) 6.118E-14 N
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.145 m and a magneticfield of 1.03 T. What is their maximum kinetic energy?
- -a) 7.342E-01 MeV
- -b) 8.076E-01 MeV
- -c) 8.884E-01 MeV
- -d) 9.772E-01 MeV
- +e) 1.075E+00 MeV
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.49 mT and 5.570E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 9.223E+05 m/s
- +b) 1.015E+06 m/s
- -c) 1.116E+06 m/s
- -d) 1.228E+06 m/s
- -e) 1.350E+06 m/s
Click these links for the keys:
Key: B2
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 9.23 mT and 6.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 4.982E+05 m/s
- -b) 5.480E+05 m/s
- -c) 6.028E+05 m/s
- +d) 6.631E+05 m/s
- -e) 7.294E+05 m/s
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.13 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(5.64 i + 1.93 j + 8.71 k) x 104 m/s?
- -a) 1.757E-14 N
- +b) 1.933E-14 N
- -c) 2.126E-14 N
- -d) 2.339E-14 N
- -e) 2.573E-14 N
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.44 m and a magneticfield of 1.31 T. What is their maximum kinetic energy?
- -a) 1.323E+01 MeV
- -b) 1.456E+01 MeV
- +c) 1.601E+01 MeV
- -d) 1.761E+01 MeV
- -e) 1.937E+01 MeV
4) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- -a) 2.417E+00 N/m
- -b) 2.659E+00 N/m
- -c) 2.924E+00 N/m
- +d) 3.217E+00 N/m
- -e) 3.539E+00 N/m
Click these links for the keys:
Key: C0
[edit | edit source]1) A circular current loop of radius 2.16 cm carries a current of 1.72 mA. What is the magnitude of the torque if the dipole is oriented at 52 ° to a uniform magnetic fied of 0.24 T?
- -a) 3.582E-07 N m
- -b) 3.940E-07 N m
- -c) 4.334E-07 N m
- +d) 4.768E-07 N m
- -e) 5.245E-07 N m
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0393 T . It emerges after being deflected by 49° from its original direction. How much time did it spend in that magnetic field?
- -a) 4.105E-07 s
- +b) 4.515E-07 s
- -c) 4.967E-07 s
- -d) 5.464E-07 s
- -e) 6.010E-07 s
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 7.67 mT and 4.260E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 5.554E+05 m/s
- -b) 6.110E+05 m/s
- -c) 6.720E+05 m/s
- -d) 7.393E+05 m/s
- -e) 8.132E+05 m/s
4) A 76 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.367 T. What current is required to maintain this balance?
- -a) 3.432E-01 A
- -b) 3.775E-01 A
- -c) 4.152E-01 A
- +d) 4.568E-01 A
- -e) 5.024E-01 A
Click these links for the keys:
Key: C1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 6.97 mT and 2.240E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 2.656E+05 m/s
- -b) 2.922E+05 m/s
- +c) 3.214E+05 m/s
- -d) 3.535E+05 m/s
- -e) 3.889E+05 m/s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0243 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- +a) 1.222E-06 s
- -b) 1.344E-06 s
- -c) 1.479E-06 s
- -d) 1.627E-06 s
- -e) 1.789E-06 s
3) A circular current loop of radius 3.25 cm carries a current of 2.78 mA. What is the magnitude of the torque if the dipole is oriented at 55 ° to a uniform magnetic fied of 0.523 T?
- -a) 2.699E-06 N m
- -b) 2.969E-06 N m
- -c) 3.266E-06 N m
- -d) 3.593E-06 N m
- +e) 3.952E-06 N m
4) A 57 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.447 T. What current is required to maintain this balance?
- -a) 2.225E-01 A
- -b) 2.448E-01 A
- +c) 2.692E-01 A
- -d) 2.962E-01 A
- -e) 3.258E-01 A
Click these links for the keys:
Key: C2
[edit | edit source]1) A circular current loop of radius 3.0 cm carries a current of 1.58 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.408 T?
- -a) 1.476E-06 N m
- +b) 1.624E-06 N m
- -c) 1.786E-06 N m
- -d) 1.965E-06 N m
- -e) 2.162E-06 N m
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0887 T . It emerges after being deflected by 69° from its original direction. How much time did it spend in that magnetic field?
- -a) 2.561E-07 s
- +b) 2.817E-07 s
- -c) 3.099E-07 s
- -d) 3.409E-07 s
- -e) 3.750E-07 s
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.96 mT and 2.010E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 2.768E+05 m/s
- -b) 3.045E+05 m/s
- -c) 3.349E+05 m/s
- -d) 3.684E+05 m/s
- +e) 4.052E+05 m/s
4) A 57 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.447 T. What current is required to maintain this balance?
- -a) 2.225E-01 A
- -b) 2.448E-01 A
- +c) 2.692E-01 A
- -d) 2.962E-01 A
- -e) 3.258E-01 A
Click these links for the keys:
Key: D0
[edit | edit source]1) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.61 T magnetic field is directed 33° away from the wire?
- -a) 1.510E+00 N/m
- +b) 1.661E+00 N/m
- -c) 1.827E+00 N/m
- -d) 2.010E+00 N/m
- -e) 2.211E+00 N/m
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0263 T . It emerges after being deflected by 65° from its original direction. How much time did it spend in that magnetic field?
- -a) 8.137E-07 s
- +b) 8.951E-07 s
- -c) 9.846E-07 s
- -d) 1.083E-06 s
- -e) 1.191E-06 s
3) A circular current loop of radius 2.84 cm carries a current of 3.01 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.174 T?
- -a) 1.075E-06 N m
- +b) 1.182E-06 N m
- -c) 1.301E-06 N m
- -d) 1.431E-06 N m
- -e) 1.574E-06 N m
4) A 57 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.447 T. What current is required to maintain this balance?
- -a) 2.225E-01 A
- -b) 2.448E-01 A
- +c) 2.692E-01 A
- -d) 2.962E-01 A
- -e) 3.258E-01 A
Click these links for the keys:
Key: D1
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0775 T . It emerges after being deflected by 73° from its original direction. How much time did it spend in that magnetic field?
- -a) 2.819E-07 s
- -b) 3.101E-07 s
- +c) 3.411E-07 s
- -d) 3.752E-07 s
- -e) 4.128E-07 s
2) A circular current loop of radius 2.1 cm carries a current of 5.02 mA. What is the magnitude of the torque if the dipole is oriented at 26 ° to a uniform magnetic fied of 0.184 T?
- +a) 5.610E-07 N m
- -b) 6.171E-07 N m
- -c) 6.788E-07 N m
- -d) 7.467E-07 N m
- -e) 8.213E-07 N m
3) A 57 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.447 T. What current is required to maintain this balance?
- -a) 2.225E-01 A
- -b) 2.448E-01 A
- +c) 2.692E-01 A
- -d) 2.962E-01 A
- -e) 3.258E-01 A
4) A long rigind wire carries a 3 A current. What is the magnetic force per unit length on the wire if a 0.534 T magnetic field is directed 18° away from the wire?
- +a) 4.950E-01 N/m
- -b) 5.445E-01 N/m
- -c) 5.990E-01 N/m
- -d) 6.589E-01 N/m
- -e) 7.248E-01 N/m
Click these links for the keys:
Key: D2
[edit | edit source]1) A circular current loop of radius 3.25 cm carries a current of 2.78 mA. What is the magnitude of the torque if the dipole is oriented at 55 ° to a uniform magnetic fied of 0.523 T?
- -a) 2.699E-06 N m
- -b) 2.969E-06 N m
- -c) 3.266E-06 N m
- -d) 3.593E-06 N m
- +e) 3.952E-06 N m
2) A 62 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.351 T. What current is required to maintain this balance?
- -a) 3.999E-01 A
- -b) 4.398E-01 A
- -c) 4.838E-01 A
- -d) 5.322E-01 A
- +e) 5.854E-01 A
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0172 T . It emerges after being deflected by 85° from its original direction. How much time did it spend in that magnetic field?
- -a) 1.627E-06 s
- +b) 1.790E-06 s
- -c) 1.969E-06 s
- -d) 2.166E-06 s
- -e) 2.382E-06 s
4) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.61 T magnetic field is directed 33° away from the wire?
- -a) 1.510E+00 N/m
- +b) 1.661E+00 N/m
- -c) 1.827E+00 N/m
- -d) 2.010E+00 N/m
- -e) 2.211E+00 N/m
Click these links for the keys:
Key: E0
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- +a) 4.791E-07 s
- -b) 5.271E-07 s
- -c) 5.798E-07 s
- -d) 6.377E-07 s
- -e) 7.015E-07 s
2) A 11 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.809 T. What current is required to maintain this balance?
- +a) 1.432E+00 A
- -b) 1.575E+00 A
- -c) 1.732E+00 A
- -d) 1.905E+00 A
- -e) 2.096E+00 A
3) A charged particle in a magnetic field of 3.410E-04 T is moving perpendicular to the magnetic field with a speed of 5.010E+05 m/s. What is the period of orbit if orbital radius is 0.508 m?
- -a) 5.792E-06 s
- +b) 6.371E-06 s
- -c) 7.008E-06 s
- -d) 7.709E-06 s
- -e) 8.480E-06 s
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.23 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(3.84 i + 8.79 j + 9.05 k) x 104 m/s?
- -a) 7.509E-14 N
- -b) 8.259E-14 N
- +c) 9.085E-14 N
- -d) 9.994E-14 N
- -e) 1.099E-13 N
Click these links for the keys:
Key: E1
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 4.6 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.92 i + 1.55 j + 6.22 k) x 104 m/s?
- -a) 2.074E-14 N
- +b) 2.282E-14 N
- -c) 2.510E-14 N
- -d) 2.761E-14 N
- -e) 3.037E-14 N
2) A 25 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.702 T. What current is required to maintain this balance?
- -a) 5.076E-01 A
- +b) 5.584E-01 A
- -c) 6.142E-01 A
- -d) 6.757E-01 A
- -e) 7.432E-01 A
3) A charged particle in a magnetic field of 6.400E-04 T is moving perpendicular to the magnetic field with a speed of 1.360E+05 m/s. What is the period of orbit if orbital radius is 0.751 m?
- -a) 3.154E-05 s
- +b) 3.470E-05 s
- -c) 3.817E-05 s
- -d) 4.198E-05 s
- -e) 4.618E-05 s
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- +a) 4.791E-07 s
- -b) 5.271E-07 s
- -c) 5.798E-07 s
- -d) 6.377E-07 s
- -e) 7.015E-07 s
Click these links for the keys:
Key: E2
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0243 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- +a) 1.222E-06 s
- -b) 1.344E-06 s
- -c) 1.479E-06 s
- -d) 1.627E-06 s
- -e) 1.789E-06 s
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.22 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(2.85 i + 1.28 j + 8.49 k) x 104 m/s?
- -a) 2.222E-14 N
- -b) 2.444E-14 N
- -c) 2.688E-14 N
- +d) 2.957E-14 N
- -e) 3.253E-14 N
3) A 72 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 14 g, and the magnitude of the magnetic field is 0.54 T. What current is required to maintain this balance?
- -a) 2.651E-01 A
- -b) 2.916E-01 A
- -c) 3.208E-01 A
- +d) 3.529E-01 A
- -e) 3.882E-01 A
4) A charged particle in a magnetic field of 3.330E-04 T is moving perpendicular to the magnetic field with a speed of 4.800E+05 m/s. What is the period of orbit if orbital radius is 0.402 m?
- -a) 4.784E-06 s
- +b) 5.262E-06 s
- -c) 5.788E-06 s
- -d) 6.367E-06 s
- -e) 7.004E-06 s
Click these links for the keys:
Key: F0
[edit | edit source]1) A 25 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.702 T. What current is required to maintain this balance?
- -a) 5.076E-01 A
- +b) 5.584E-01 A
- -c) 6.142E-01 A
- -d) 6.757E-01 A
- -e) 7.432E-01 A
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.011 T . It emerges after being deflected by 70° from its original direction. How much time did it spend in that magnetic field?
- -a) 2.095E-06 s
- +b) 2.305E-06 s
- -c) 2.535E-06 s
- -d) 2.789E-06 s
- -e) 3.067E-06 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.118 m and a magneticfield of 1.48 T. What is their maximum kinetic energy?
- -a) 1.004E+00 MeV
- -b) 1.104E+00 MeV
- -c) 1.215E+00 MeV
- -d) 1.336E+00 MeV
- +e) 1.470E+00 MeV
4) A long rigind wire carries a 6 A current. What is the magnetic force per unit length on the wire if a 0.623 T magnetic field is directed 73° away from the wire?
- +a) 3.575E+00 N/m
- -b) 3.932E+00 N/m
- -c) 4.325E+00 N/m
- -d) 4.758E+00 N/m
- -e) 5.234E+00 N/m
Click these links for the keys:
Key: F1
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0482 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- -a) 4.629E-07 s
- -b) 5.092E-07 s
- -c) 5.601E-07 s
- +d) 6.161E-07 s
- -e) 6.777E-07 s
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.388 m and a magneticfield of 1.19 T. What is their maximum kinetic energy?
- -a) 8.491E+00 MeV
- -b) 9.340E+00 MeV
- +c) 1.027E+01 MeV
- -d) 1.130E+01 MeV
- -e) 1.243E+01 MeV
3) A 33 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.869 T. What current is required to maintain this balance?
- -a) 2.259E-01 A
- -b) 2.485E-01 A
- +c) 2.734E-01 A
- -d) 3.007E-01 A
- -e) 3.308E-01 A
4) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.394 T magnetic field is directed 14° away from the wire?
- -a) 6.302E-01 N/m
- -b) 6.932E-01 N/m
- +c) 7.625E-01 N/m
- -d) 8.388E-01 N/m
- -e) 9.227E-01 N/m
Click these links for the keys:
Key: F2
[edit | edit source]1) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.88 T magnetic field is directed 47° away from the wire?
- -a) 4.096E+00 N/m
- +b) 4.505E+00 N/m
- -c) 4.956E+00 N/m
- -d) 5.451E+00 N/m
- -e) 5.996E+00 N/m
2) A 27 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.85 T. What current is required to maintain this balance?
- -a) 3.106E-01 A
- +b) 3.416E-01 A
- -c) 3.758E-01 A
- -d) 4.134E-01 A
- -e) 4.547E-01 A
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.232 m and a magneticfield of 1.1 T. What is their maximum kinetic energy?
- -a) 2.853E+00 MeV
- +b) 3.139E+00 MeV
- -c) 3.453E+00 MeV
- -d) 3.798E+00 MeV
- -e) 4.178E+00 MeV
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0108 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- -a) 1.940E-06 s
- -b) 2.134E-06 s
- -c) 2.347E-06 s
- +d) 2.582E-06 s
- -e) 2.840E-06 s
Click these links for the keys:
Key: G0
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.23 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(3.84 i + 8.79 j + 9.05 k) x 104 m/s?
- -a) 7.509E-14 N
- -b) 8.259E-14 N
- +c) 9.085E-14 N
- -d) 9.994E-14 N
- -e) 1.099E-13 N
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.85 mT and 3.760E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 4.829E+05 m/s
- -b) 5.312E+05 m/s
- -c) 5.843E+05 m/s
- +d) 6.427E+05 m/s
- -e) 7.070E+05 m/s
3) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.355 T magnetic field is directed 53° away from the wire?
- -a) 8.520E-01 N/m
- -b) 9.372E-01 N/m
- -c) 1.031E+00 N/m
- +d) 1.134E+00 N/m
- -e) 1.247E+00 N/m
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0482 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- -a) 4.629E-07 s
- -b) 5.092E-07 s
- -c) 5.601E-07 s
- +d) 6.161E-07 s
- -e) 6.777E-07 s
Click these links for the keys:
Key: G1
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0263 T . It emerges after being deflected by 65° from its original direction. How much time did it spend in that magnetic field?
- -a) 8.137E-07 s
- +b) 8.951E-07 s
- -c) 9.846E-07 s
- -d) 1.083E-06 s
- -e) 1.191E-06 s
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.96 mT and 2.010E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 2.768E+05 m/s
- -b) 3.045E+05 m/s
- -c) 3.349E+05 m/s
- -d) 3.684E+05 m/s
- +e) 4.052E+05 m/s
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.83 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.16 i + 2.1 j + 1.74 k) x 104 m/s?
- -a) 4.783E-14 N
- +b) 5.262E-14 N
- -c) 5.788E-14 N
- -d) 6.367E-14 N
- -e) 7.003E-14 N
4) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.761 T magnetic field is directed 44° away from the wire?
- -a) 2.527E+00 N/m
- -b) 2.780E+00 N/m
- -c) 3.058E+00 N/m
- -d) 3.364E+00 N/m
- +e) 3.700E+00 N/m
Click these links for the keys:
Key: G2
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 9.23 mT and 6.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 4.982E+05 m/s
- -b) 5.480E+05 m/s
- -c) 6.028E+05 m/s
- +d) 6.631E+05 m/s
- -e) 7.294E+05 m/s
2) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.83 T magnetic field is directed 22° away from the wire?
- -a) 1.062E+00 N/m
- -b) 1.168E+00 N/m
- -c) 1.285E+00 N/m
- -d) 1.413E+00 N/m
- +e) 1.555E+00 N/m
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- +a) 4.791E-07 s
- -b) 5.271E-07 s
- -c) 5.798E-07 s
- -d) 6.377E-07 s
- -e) 7.015E-07 s
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.16 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.13 i + 3.24 j + 6.96 k) x 104 m/s?
- -a) 7.691E-14 N
- +b) 8.460E-14 N
- -c) 9.306E-14 N
- -d) 1.024E-13 N
- -e) 1.126E-13 N
Click these links for the keys:
Key: H0
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.15 mT and 4.440E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 1.070E+06 m/s
- -b) 1.177E+06 m/s
- -c) 1.295E+06 m/s
- -d) 1.424E+06 m/s
- -e) 1.566E+06 m/s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0883 T . It emerges after being deflected by 74° from its original direction. How much time did it spend in that magnetic field?
- -a) 2.280E-07 s
- -b) 2.508E-07 s
- -c) 2.759E-07 s
- +d) 3.035E-07 s
- -e) 3.339E-07 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.378 m and a magneticfield of 0.835 T. What is their maximum kinetic energy?
- -a) 4.365E+00 MeV
- +b) 4.801E+00 MeV
- -c) 5.281E+00 MeV
- -d) 5.809E+00 MeV
- -e) 6.390E+00 MeV
- -a) 1.322E-06 V
- +b) 1.454E-06 V
- -c) 1.600E-06 V
- -d) 1.759E-06 V
- -e) 1.935E-06 V
Click these links for the keys:
Key: H1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.62 mT and 2.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 8.092E+05 m/s
- -b) 8.901E+05 m/s
- -c) 9.791E+05 m/s
- -d) 1.077E+06 m/s
- -e) 1.185E+06 m/s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- +a) 4.791E-07 s
- -b) 5.271E-07 s
- -c) 5.798E-07 s
- -d) 6.377E-07 s
- -e) 7.015E-07 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.295 m and a magneticfield of 1.44 T. What is their maximum kinetic energy?
- -a) 6.534E+00 MeV
- -b) 7.187E+00 MeV
- -c) 7.906E+00 MeV
- +d) 8.697E+00 MeV
- -e) 9.566E+00 MeV
- -a) 1.560E-06 V
- +b) 1.716E-06 V
- -c) 1.888E-06 V
- -d) 2.077E-06 V
- -e) 2.284E-06 V
Click these links for the keys:
Key: H2
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0631 T . It emerges after being deflected by 44° from its original direction. How much time did it spend in that magnetic field?
- -a) 1.897E-07 s
- -b) 2.087E-07 s
- -c) 2.296E-07 s
- +d) 2.525E-07 s
- -e) 2.778E-07 s
- -a) 1.375E-05 V
- +b) 1.513E-05 V
- -c) 1.664E-05 V
- -d) 1.831E-05 V
- -e) 2.014E-05 V
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.355 m and a magneticfield of 1.28 T. What is their maximum kinetic energy?
- -a) 7.476E+00 MeV
- -b) 8.224E+00 MeV
- -c) 9.046E+00 MeV
- +d) 9.951E+00 MeV
- -e) 1.095E+01 MeV
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.13 mT and 2.810E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 6.804E+05 m/s
- -b) 7.484E+05 m/s
- -c) 8.233E+05 m/s
- -d) 9.056E+05 m/s
- -e) 9.962E+05 m/s
Click these links for the keys:
Key: I0
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0172 T . It emerges after being deflected by 85° from its original direction. How much time did it spend in that magnetic field?
- -a) 1.627E-06 s
- +b) 1.790E-06 s
- -c) 1.969E-06 s
- -d) 2.166E-06 s
- -e) 2.382E-06 s
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.448 m and a magneticfield of 0.812 T. What is their maximum kinetic energy?
- -a) 5.798E+00 MeV
- +b) 6.377E+00 MeV
- -c) 7.015E+00 MeV
- -d) 7.717E+00 MeV
- -e) 8.488E+00 MeV
- +a) 7.202E-06 V
- -b) 7.922E-06 V
- -c) 8.714E-06 V
- -d) 9.586E-06 V
- -e) 1.054E-05 V
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 1.85 mT and 5.080E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 2.746E+06 m/s
- -b) 3.021E+06 m/s
- -c) 3.323E+06 m/s
- -d) 3.655E+06 m/s
- -e) 4.020E+06 m/s
Click these links for the keys:
Key: I1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.85 mT and 3.760E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 4.829E+05 m/s
- -b) 5.312E+05 m/s
- -c) 5.843E+05 m/s
- +d) 6.427E+05 m/s
- -e) 7.070E+05 m/s
- -a) 6.795E-06 V
- -b) 7.475E-06 V
- -c) 8.222E-06 V
- +d) 9.045E-06 V
- -e) 9.949E-06 V
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0279 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- -a) 7.270E-07 s
- -b) 7.997E-07 s
- -c) 8.797E-07 s
- -d) 9.676E-07 s
- +e) 1.064E-06 s
4) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.436 m and a magneticfield of 0.881 T. What is their maximum kinetic energy?
- -a) 5.342E+00 MeV
- -b) 5.877E+00 MeV
- -c) 6.464E+00 MeV
- +d) 7.111E+00 MeV
- -e) 7.822E+00 MeV
Click these links for the keys:
Key: I2
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.13 mT and 2.810E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 6.804E+05 m/s
- -b) 7.484E+05 m/s
- -c) 8.233E+05 m/s
- -d) 9.056E+05 m/s
- -e) 9.962E+05 m/s
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.295 m and a magneticfield of 1.44 T. What is their maximum kinetic energy?
- -a) 6.534E+00 MeV
- -b) 7.187E+00 MeV
- -c) 7.906E+00 MeV
- +d) 8.697E+00 MeV
- -e) 9.566E+00 MeV
- -a) 1.648E-06 V
- -b) 1.813E-06 V
- -c) 1.994E-06 V
- +d) 2.194E-06 V
- -e) 2.413E-06 V
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0837 T . It emerges after being deflected by 41° from its original direction. How much time did it spend in that magnetic field?
- -a) 1.212E-07 s
- -b) 1.333E-07 s
- -c) 1.466E-07 s
- -d) 1.613E-07 s
- +e) 1.774E-07 s
Click these links for the keys:
Key: J0
[edit | edit source]1) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- -a) 2.417E+00 N/m
- -b) 2.659E+00 N/m
- -c) 2.924E+00 N/m
- +d) 3.217E+00 N/m
- -e) 3.539E+00 N/m
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.388 m and a magneticfield of 1.19 T. What is their maximum kinetic energy?
- -a) 8.491E+00 MeV
- -b) 9.340E+00 MeV
- +c) 1.027E+01 MeV
- -d) 1.130E+01 MeV
- -e) 1.243E+01 MeV
3) A circular current loop of radius 2.48 cm carries a current of 3.67 mA. What is the magnitude of the torque if the dipole is oriented at 21 ° to a uniform magnetic fied of 0.402 T?
- +a) 1.022E-06 N m
- -b) 1.124E-06 N m
- -c) 1.236E-06 N m
- -d) 1.360E-06 N m
- -e) 1.496E-06 N m
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.62 mT and 2.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 8.092E+05 m/s
- -b) 8.901E+05 m/s
- -c) 9.791E+05 m/s
- -d) 1.077E+06 m/s
- -e) 1.185E+06 m/s
Click these links for the keys:
Key: J1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.49 mT and 5.570E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 9.223E+05 m/s
- +b) 1.015E+06 m/s
- -c) 1.116E+06 m/s
- -d) 1.228E+06 m/s
- -e) 1.350E+06 m/s
2) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- -a) 2.417E+00 N/m
- -b) 2.659E+00 N/m
- -c) 2.924E+00 N/m
- +d) 3.217E+00 N/m
- -e) 3.539E+00 N/m
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.413 m and a magneticfield of 0.988 T. What is their maximum kinetic energy?
- -a) 6.029E+00 MeV
- -b) 6.631E+00 MeV
- -c) 7.295E+00 MeV
- +d) 8.024E+00 MeV
- -e) 8.827E+00 MeV
4) A circular current loop of radius 2.84 cm carries a current of 3.01 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.174 T?
- -a) 1.075E-06 N m
- +b) 1.182E-06 N m
- -c) 1.301E-06 N m
- -d) 1.431E-06 N m
- -e) 1.574E-06 N m
Click these links for the keys:
Key: J2
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.436 m and a magneticfield of 0.881 T. What is their maximum kinetic energy?
- -a) 5.342E+00 MeV
- -b) 5.877E+00 MeV
- -c) 6.464E+00 MeV
- +d) 7.111E+00 MeV
- -e) 7.822E+00 MeV
2) A circular current loop of radius 2.99 cm carries a current of 4.54 mA. What is the magnitude of the torque if the dipole is oriented at 34 ° to a uniform magnetic fied of 0.107 T?
- +a) 7.629E-07 N m
- -b) 8.392E-07 N m
- -c) 9.232E-07 N m
- -d) 1.015E-06 N m
- -e) 1.117E-06 N m
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.46 mT and 1.710E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 3.132E+05 m/s
- -b) 3.445E+05 m/s
- -c) 3.790E+05 m/s
- -d) 4.169E+05 m/s
- -e) 4.585E+05 m/s
4) A long rigind wire carries a 6 A current. What is the magnetic force per unit length on the wire if a 0.504 T magnetic field is directed 70° away from the wire?
- -a) 2.348E+00 N/m
- -b) 2.583E+00 N/m
- +c) 2.842E+00 N/m
- -d) 3.126E+00 N/m
- -e) 3.438E+00 N/m
Click these links for the keys:
Key: K0
[edit | edit source]1) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.761 T magnetic field is directed 44° away from the wire?
- -a) 2.527E+00 N/m
- -b) 2.780E+00 N/m
- -c) 3.058E+00 N/m
- -d) 3.364E+00 N/m
- +e) 3.700E+00 N/m
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.448 m and a magneticfield of 0.812 T. What is their maximum kinetic energy?
- -a) 5.798E+00 MeV
- +b) 6.377E+00 MeV
- -c) 7.015E+00 MeV
- -d) 7.717E+00 MeV
- -e) 8.488E+00 MeV
3) A 34 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.348 T. What current is required to maintain this balance?
- +a) 6.626E-01 A
- -b) 7.289E-01 A
- -c) 8.018E-01 A
- -d) 8.819E-01 A
- -e) 9.701E-01 A
4) A charged particle in a magnetic field of 3.720E-04 T is moving perpendicular to the magnetic field with a speed of 4.780E+05 m/s. What is the period of orbit if orbital radius is 0.868 m?
- -a) 7.793E-06 s
- -b) 8.572E-06 s
- -c) 9.429E-06 s
- -d) 1.037E-05 s
- +e) 1.141E-05 s
Click these links for the keys:
Key: K1
[edit | edit source]1) A 57 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.447 T. What current is required to maintain this balance?
- -a) 2.225E-01 A
- -b) 2.448E-01 A
- +c) 2.692E-01 A
- -d) 2.962E-01 A
- -e) 3.258E-01 A
2) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.355 T magnetic field is directed 53° away from the wire?
- -a) 8.520E-01 N/m
- -b) 9.372E-01 N/m
- -c) 1.031E+00 N/m
- +d) 1.134E+00 N/m
- -e) 1.247E+00 N/m
3) A charged particle in a magnetic field of 4.910E-04 T is moving perpendicular to the magnetic field with a speed of 3.000E+05 m/s. What is the period of orbit if orbital radius is 0.507 m?
- +a) 1.062E-05 s
- -b) 1.168E-05 s
- -c) 1.285E-05 s
- -d) 1.413E-05 s
- -e) 1.555E-05 s
4) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.118 m and a magneticfield of 1.48 T. What is their maximum kinetic energy?
- -a) 1.004E+00 MeV
- -b) 1.104E+00 MeV
- -c) 1.215E+00 MeV
- -d) 1.336E+00 MeV
- +e) 1.470E+00 MeV
Click these links for the keys:
Key: K2
[edit | edit source]1) A charged particle in a magnetic field of 3.820E-04 T is moving perpendicular to the magnetic field with a speed of 3.890E+05 m/s. What is the period of orbit if orbital radius is 0.718 m?
- -a) 8.713E-06 s
- -b) 9.584E-06 s
- -c) 1.054E-05 s
- +d) 1.160E-05 s
- -e) 1.276E-05 s
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.409 m and a magneticfield of 1.27 T. What is their maximum kinetic energy?
- -a) 8.881E+00 MeV
- -b) 9.769E+00 MeV
- -c) 1.075E+01 MeV
- -d) 1.182E+01 MeV
- +e) 1.300E+01 MeV
3) A 11 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.809 T. What current is required to maintain this balance?
- +a) 1.432E+00 A
- -b) 1.575E+00 A
- -c) 1.732E+00 A
- -d) 1.905E+00 A
- -e) 2.096E+00 A
4) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.61 T magnetic field is directed 33° away from the wire?
- -a) 1.510E+00 N/m
- +b) 1.661E+00 N/m
- -c) 1.827E+00 N/m
- -d) 2.010E+00 N/m
- -e) 2.211E+00 N/m
Click these links for the keys:
Key: L0
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.232 m and a magneticfield of 1.1 T. What is their maximum kinetic energy?
- -a) 2.853E+00 MeV
- +b) 3.139E+00 MeV
- -c) 3.453E+00 MeV
- -d) 3.798E+00 MeV
- -e) 4.178E+00 MeV
2) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.379 T magnetic field is directed 53° away from the wire?
- -a) 1.001E+00 N/m
- -b) 1.101E+00 N/m
- +c) 1.211E+00 N/m
- -d) 1.332E+00 N/m
- -e) 1.465E+00 N/m
3) A charged particle in a magnetic field of 2.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.120E+05 m/s. What is the period of orbit if orbital radius is 0.385 m?
- +a) 1.141E-05 s
- -b) 1.255E-05 s
- -c) 1.381E-05 s
- -d) 1.519E-05 s
- -e) 1.671E-05 s
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 9.76 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.97 i + 8.52 j + 9.46 k) x 104 m/s?
- -a) 2.199E-13 N
- -b) 2.419E-13 N
- +c) 2.661E-13 N
- -d) 2.927E-13 N
- -e) 3.220E-13 N
Click these links for the keys:
Key: L1
[edit | edit source]1) A long rigind wire carries a 6 A current. What is the magnetic force per unit length on the wire if a 0.504 T magnetic field is directed 70° away from the wire?
- -a) 2.348E+00 N/m
- -b) 2.583E+00 N/m
- +c) 2.842E+00 N/m
- -d) 3.126E+00 N/m
- -e) 3.438E+00 N/m
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.22 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(2.85 i + 1.28 j + 8.49 k) x 104 m/s?
- -a) 2.222E-14 N
- -b) 2.444E-14 N
- -c) 2.688E-14 N
- +d) 2.957E-14 N
- -e) 3.253E-14 N
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- -a) 2.875E+00 MeV
- -b) 3.162E+00 MeV
- -c) 3.479E+00 MeV
- -d) 3.827E+00 MeV
- +e) 4.209E+00 MeV
4) A charged particle in a magnetic field of 4.970E-04 T is moving perpendicular to the magnetic field with a speed of 2.950E+05 m/s. What is the period of orbit if orbital radius is 0.344 m?
- +a) 7.327E-06 s
- -b) 8.060E-06 s
- -c) 8.865E-06 s
- -d) 9.752E-06 s
- -e) 1.073E-05 s
Click these links for the keys:
Key: L2
[edit | edit source]1) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.83 T magnetic field is directed 22° away from the wire?
- -a) 1.062E+00 N/m
- -b) 1.168E+00 N/m
- -c) 1.285E+00 N/m
- -d) 1.413E+00 N/m
- +e) 1.555E+00 N/m
2) A charged particle in a magnetic field of 3.600E-04 T is moving perpendicular to the magnetic field with a speed of 5.960E+05 m/s. What is the period of orbit if orbital radius is 0.397 m?
- -a) 3.805E-06 s
- +b) 4.185E-06 s
- -c) 4.604E-06 s
- -d) 5.064E-06 s
- -e) 5.571E-06 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.419 m and a magneticfield of 1.45 T. What is their maximum kinetic energy?
- -a) 1.336E+01 MeV
- -b) 1.470E+01 MeV
- -c) 1.617E+01 MeV
- +d) 1.779E+01 MeV
- -e) 1.957E+01 MeV
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 1.21 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(2.75 i + 9.06 j + 3.5 k) x 104 m/s?
- -a) 2.899E-14 N
- -b) 3.189E-14 N
- +c) 3.508E-14 N
- -d) 3.859E-14 N
- -e) 4.245E-14 N
Click these links for the keys:
Key: M0
[edit | edit source]1) A circular current loop of radius 1.88 cm carries a current of 3.41 mA. What is the magnitude of the torque if the dipole is oriented at 62 ° to a uniform magnetic fied of 0.415 T?
- +a) 1.387E-06 N m
- -b) 1.526E-06 N m
- -c) 1.679E-06 N m
- -d) 1.847E-06 N m
- -e) 2.031E-06 N m
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0108 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- -a) 1.940E-06 s
- -b) 2.134E-06 s
- -c) 2.347E-06 s
- +d) 2.582E-06 s
- -e) 2.840E-06 s
3) A 96 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.325 T. What current is required to maintain this balance?
- -a) 2.596E-01 A
- -b) 2.855E-01 A
- +c) 3.141E-01 A
- -d) 3.455E-01 A
- -e) 3.801E-01 A
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.16 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.13 i + 3.24 j + 6.96 k) x 104 m/s?
- -a) 7.691E-14 N
- +b) 8.460E-14 N
- -c) 9.306E-14 N
- -d) 1.024E-13 N
- -e) 1.126E-13 N
Click these links for the keys:
Key: M1
[edit | edit source]1) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0327 T . It emerges after being deflected by 89° from its original direction. How much time did it spend in that magnetic field?
- +a) 9.857E-07 s
- -b) 1.084E-06 s
- -c) 1.193E-06 s
- -d) 1.312E-06 s
- -e) 1.443E-06 s
2) A 34 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.348 T. What current is required to maintain this balance?
- +a) 6.626E-01 A
- -b) 7.289E-01 A
- -c) 8.018E-01 A
- -d) 8.819E-01 A
- -e) 9.701E-01 A
3) A circular current loop of radius 1.63 cm carries a current of 2.38 mA. What is the magnitude of the torque if the dipole is oriented at 54 ° to a uniform magnetic fied of 0.125 T?
- +a) 2.009E-07 N m
- -b) 2.210E-07 N m
- -c) 2.431E-07 N m
- -d) 2.674E-07 N m
- -e) 2.941E-07 N m
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 9.76 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.97 i + 8.52 j + 9.46 k) x 104 m/s?
- -a) 2.199E-13 N
- -b) 2.419E-13 N
- +c) 2.661E-13 N
- -d) 2.927E-13 N
- -e) 3.220E-13 N
Click these links for the keys:
Key: M2
[edit | edit source]1) A circular current loop of radius 1.67 cm carries a current of 3.81 mA. What is the magnitude of the torque if the dipole is oriented at 40 ° to a uniform magnetic fied of 0.884 T?
- -a) 1.568E-06 N m
- -b) 1.724E-06 N m
- +c) 1.897E-06 N m
- -d) 2.087E-06 N m
- -e) 2.295E-06 N m
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.061 T . It emerges after being deflected by 75° from its original direction. How much time did it spend in that magnetic field?
- +a) 4.453E-07 s
- -b) 4.898E-07 s
- -c) 5.388E-07 s
- -d) 5.927E-07 s
- -e) 6.519E-07 s
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.62 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.7 i + 2.31 j + 7.08 k) x 104 m/s?
- -a) 1.828E-14 N
- -b) 2.010E-14 N
- -c) 2.211E-14 N
- -d) 2.433E-14 N
- +e) 2.676E-14 N
4) A 34 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.348 T. What current is required to maintain this balance?
- +a) 6.626E-01 A
- -b) 7.289E-01 A
- -c) 8.018E-01 A
- -d) 8.819E-01 A
- -e) 9.701E-01 A
Click these links for the keys:
Key: N0
[edit | edit source]- -a) 1.080E-06 V
- -b) 1.188E-06 V
- -c) 1.306E-06 V
- -d) 1.437E-06 V
- +e) 1.581E-06 V
2) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.851 T magnetic field is directed 65° away from the wire?
- -a) 4.908E+00 N/m
- +b) 5.399E+00 N/m
- -c) 5.939E+00 N/m
- -d) 6.533E+00 N/m
- -e) 7.186E+00 N/m
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.16 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.13 i + 3.24 j + 6.96 k) x 104 m/s?
- -a) 7.691E-14 N
- +b) 8.460E-14 N
- -c) 9.306E-14 N
- -d) 1.024E-13 N
- -e) 1.126E-13 N
4) A 27 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.85 T. What current is required to maintain this balance?
- -a) 3.106E-01 A
- +b) 3.416E-01 A
- -c) 3.758E-01 A
- -d) 4.134E-01 A
- -e) 4.547E-01 A
Click these links for the keys:
Key: N1
[edit | edit source]- -a) 6.104E-06 V
- -b) 6.714E-06 V
- +c) 7.385E-06 V
- -d) 8.124E-06 V
- -e) 8.936E-06 V
2) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- -a) 2.417E+00 N/m
- -b) 2.659E+00 N/m
- -c) 2.924E+00 N/m
- +d) 3.217E+00 N/m
- -e) 3.539E+00 N/m
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 8.16 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.13 i + 3.24 j + 6.96 k) x 104 m/s?
- -a) 7.691E-14 N
- +b) 8.460E-14 N
- -c) 9.306E-14 N
- -d) 1.024E-13 N
- -e) 1.126E-13 N
4) A 44 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.784 T. What current is required to maintain this balance?
- -a) 1.644E-01 A
- -b) 1.808E-01 A
- +c) 1.989E-01 A
- -d) 2.188E-01 A
- -e) 2.406E-01 A
Click these links for the keys:
Key: N2
[edit | edit source]1) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.61 T magnetic field is directed 33° away from the wire?
- -a) 1.510E+00 N/m
- +b) 1.661E+00 N/m
- -c) 1.827E+00 N/m
- -d) 2.010E+00 N/m
- -e) 2.211E+00 N/m
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.41 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.21 i + 5.39 j + 3.81 k) x 104 m/s?
- -a) 4.419E-14 N
- -b) 4.861E-14 N
- -c) 5.347E-14 N
- +d) 5.882E-14 N
- -e) 6.470E-14 N
- +a) 7.202E-06 V
- -b) 7.922E-06 V
- -c) 8.714E-06 V
- -d) 9.586E-06 V
- -e) 1.054E-05 V
4) A 96 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.325 T. What current is required to maintain this balance?
- -a) 2.596E-01 A
- -b) 2.855E-01 A
- +c) 3.141E-01 A
- -d) 3.455E-01 A
- -e) 3.801E-01 A
Click these links for the keys:
Key: O0
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 6.97 mT and 2.240E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 2.656E+05 m/s
- -b) 2.922E+05 m/s
- +c) 3.214E+05 m/s
- -d) 3.535E+05 m/s
- -e) 3.889E+05 m/s
2) A charged particle in a magnetic field of 4.660E-04 T is moving perpendicular to the magnetic field with a speed of 7.720E+05 m/s. What is the period of orbit if orbital radius is 0.747 m?
- +a) 6.080E-06 s
- -b) 6.688E-06 s
- -c) 7.356E-06 s
- -d) 8.092E-06 s
- -e) 8.901E-06 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.419 m and a magneticfield of 1.45 T. What is their maximum kinetic energy?
- -a) 1.336E+01 MeV
- -b) 1.470E+01 MeV
- -c) 1.617E+01 MeV
- +d) 1.779E+01 MeV
- -e) 1.957E+01 MeV
- -a) 6.795E-06 V
- -b) 7.475E-06 V
- -c) 8.222E-06 V
- +d) 9.045E-06 V
- -e) 9.949E-06 V
Click these links for the keys:
Key: O1
[edit | edit source]- -a) 9.015E-06 V
- +b) 9.916E-06 V
- -c) 1.091E-05 V
- -d) 1.200E-05 V
- -e) 1.320E-05 V
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.355 m and a magneticfield of 1.28 T. What is their maximum kinetic energy?
- -a) 7.476E+00 MeV
- -b) 8.224E+00 MeV
- -c) 9.046E+00 MeV
- +d) 9.951E+00 MeV
- -e) 1.095E+01 MeV
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.88 mT and 7.340E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 1.504E+06 m/s
- -b) 1.655E+06 m/s
- -c) 1.820E+06 m/s
- -d) 2.002E+06 m/s
- -e) 2.202E+06 m/s
4) A charged particle in a magnetic field of 2.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.120E+05 m/s. What is the period of orbit if orbital radius is 0.385 m?
- +a) 1.141E-05 s
- -b) 1.255E-05 s
- -c) 1.381E-05 s
- -d) 1.519E-05 s
- -e) 1.671E-05 s
Click these links for the keys:
Key: O2
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.409 m and a magneticfield of 1.27 T. What is their maximum kinetic energy?
- -a) 8.881E+00 MeV
- -b) 9.769E+00 MeV
- -c) 1.075E+01 MeV
- -d) 1.182E+01 MeV
- +e) 1.300E+01 MeV
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.85 mT and 3.760E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 4.829E+05 m/s
- -b) 5.312E+05 m/s
- -c) 5.843E+05 m/s
- +d) 6.427E+05 m/s
- -e) 7.070E+05 m/s
- +a) 1.209E-06 V
- -b) 1.329E-06 V
- -c) 1.462E-06 V
- -d) 1.609E-06 V
- -e) 1.770E-06 V
4) A charged particle in a magnetic field of 5.500E-04 T is moving perpendicular to the magnetic field with a speed of 2.930E+05 m/s. What is the period of orbit if orbital radius is 0.787 m?
- +a) 1.688E-05 s
- -b) 1.856E-05 s
- -c) 2.042E-05 s
- -d) 2.246E-05 s
- -e) 2.471E-05 s
Click these links for the keys:
Key: P0
[edit | edit source]1) A circular current loop of radius 2.48 cm carries a current of 3.67 mA. What is the magnitude of the torque if the dipole is oriented at 21 ° to a uniform magnetic fied of 0.402 T?
- +a) 1.022E-06 N m
- -b) 1.124E-06 N m
- -c) 1.236E-06 N m
- -d) 1.360E-06 N m
- -e) 1.496E-06 N m
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.04 mT and 7.820E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 1.060E+06 m/s
- -b) 1.166E+06 m/s
- -c) 1.282E+06 m/s
- -d) 1.411E+06 m/s
- +e) 1.552E+06 m/s
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 6.96 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(7.01 i + 5.35 j + 2.07 k) x 104 m/s?
- +a) 1.192E-13 N
- -b) 1.311E-13 N
- -c) 1.442E-13 N
- -d) 1.586E-13 N
- -e) 1.745E-13 N
- -a) 6.795E-06 V
- -b) 7.475E-06 V
- -c) 8.222E-06 V
- +d) 9.045E-06 V
- -e) 9.949E-06 V
Click these links for the keys:
Key: P1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.43 mT and 4.670E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 1.362E+06 m/s
- -b) 1.498E+06 m/s
- -c) 1.647E+06 m/s
- -d) 1.812E+06 m/s
- -e) 1.993E+06 m/s
2) A circular current loop of radius 1.59 cm carries a current of 1.13 mA. What is the magnitude of the torque if the dipole is oriented at 41 ° to a uniform magnetic fied of 0.189 T?
- +a) 1.113E-07 N m
- -b) 1.224E-07 N m
- -c) 1.347E-07 N m
- -d) 1.481E-07 N m
- -e) 1.629E-07 N m
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 9.76 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.97 i + 8.52 j + 9.46 k) x 104 m/s?
- -a) 2.199E-13 N
- -b) 2.419E-13 N
- +c) 2.661E-13 N
- -d) 2.927E-13 N
- -e) 3.220E-13 N
- -a) 6.100E-06 V
- -b) 6.710E-06 V
- -c) 7.381E-06 V
- -d) 8.120E-06 V
- +e) 8.931E-06 V
Click these links for the keys:
Key: P2
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 7.67 mT and 4.260E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 5.554E+05 m/s
- -b) 6.110E+05 m/s
- -c) 6.720E+05 m/s
- -d) 7.393E+05 m/s
- -e) 8.132E+05 m/s
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.41 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.21 i + 5.39 j + 3.81 k) x 104 m/s?
- -a) 4.419E-14 N
- -b) 4.861E-14 N
- -c) 5.347E-14 N
- +d) 5.882E-14 N
- -e) 6.470E-14 N
3) A circular current loop of radius 3.25 cm carries a current of 2.78 mA. What is the magnitude of the torque if the dipole is oriented at 55 ° to a uniform magnetic fied of 0.523 T?
- -a) 2.699E-06 N m
- -b) 2.969E-06 N m
- -c) 3.266E-06 N m
- -d) 3.593E-06 N m
- +e) 3.952E-06 N m
- -a) 2.275E-06 V
- +b) 2.502E-06 V
- -c) 2.752E-06 V
- -d) 3.027E-06 V
- -e) 3.330E-06 V
Click these links for the keys:
Key: Q0
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.43 mT and 4.670E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 1.362E+06 m/s
- -b) 1.498E+06 m/s
- -c) 1.647E+06 m/s
- -d) 1.812E+06 m/s
- -e) 1.993E+06 m/s
- -a) 1.322E-06 V
- +b) 1.454E-06 V
- -c) 1.600E-06 V
- -d) 1.759E-06 V
- -e) 1.935E-06 V
3) A 72 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 14 g, and the magnitude of the magnetic field is 0.54 T. What current is required to maintain this balance?
- -a) 2.651E-01 A
- -b) 2.916E-01 A
- -c) 3.208E-01 A
- +d) 3.529E-01 A
- -e) 3.882E-01 A
4) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.265 T magnetic field is directed 26° away from the wire?
- -a) 3.840E-01 N/m
- -b) 4.224E-01 N/m
- +c) 4.647E-01 N/m
- -d) 5.111E-01 N/m
- -e) 5.623E-01 N/m
Click these links for the keys:
Key: Q1
[edit | edit source]1) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.61 T magnetic field is directed 33° away from the wire?
- -a) 1.510E+00 N/m
- +b) 1.661E+00 N/m
- -c) 1.827E+00 N/m
- -d) 2.010E+00 N/m
- -e) 2.211E+00 N/m
2) A 27 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.85 T. What current is required to maintain this balance?
- -a) 3.106E-01 A
- +b) 3.416E-01 A
- -c) 3.758E-01 A
- -d) 4.134E-01 A
- -e) 4.547E-01 A
- -a) 9.911E-06 V
- +b) 1.090E-05 V
- -c) 1.199E-05 V
- -d) 1.319E-05 V
- -e) 1.451E-05 V
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.43 mT and 4.670E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 1.362E+06 m/s
- -b) 1.498E+06 m/s
- -c) 1.647E+06 m/s
- -d) 1.812E+06 m/s
- -e) 1.993E+06 m/s
Click these links for the keys:
Key: Q2
[edit | edit source]1) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.379 T magnetic field is directed 53° away from the wire?
- -a) 1.001E+00 N/m
- -b) 1.101E+00 N/m
- +c) 1.211E+00 N/m
- -d) 1.332E+00 N/m
- -e) 1.465E+00 N/m
- -a) 1.322E-06 V
- +b) 1.454E-06 V
- -c) 1.600E-06 V
- -d) 1.759E-06 V
- -e) 1.935E-06 V
3) A 27 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.85 T. What current is required to maintain this balance?
- -a) 3.106E-01 A
- +b) 3.416E-01 A
- -c) 3.758E-01 A
- -d) 4.134E-01 A
- -e) 4.547E-01 A
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.34 mT and 7.430E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 1.671E+06 m/s
- -b) 1.838E+06 m/s
- -c) 2.022E+06 m/s
- +d) 2.225E+06 m/s
- -e) 2.447E+06 m/s
Click these links for the keys:
Key: R0
[edit | edit source]1) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.394 T magnetic field is directed 14° away from the wire?
- -a) 6.302E-01 N/m
- -b) 6.932E-01 N/m
- +c) 7.625E-01 N/m
- -d) 8.388E-01 N/m
- -e) 9.227E-01 N/m
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 7.67 mT and 4.260E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 5.554E+05 m/s
- -b) 6.110E+05 m/s
- -c) 6.720E+05 m/s
- -d) 7.393E+05 m/s
- -e) 8.132E+05 m/s
3) A circular current loop of radius 1.94 cm carries a current of 1.83 mA. What is the magnitude of the torque if the dipole is oriented at 43 ° to a uniform magnetic fied of 0.156 T?
- -a) 1.903E-07 N m
- -b) 2.093E-07 N m
- +c) 2.302E-07 N m
- -d) 2.532E-07 N m
- -e) 2.785E-07 N m
4) A 96 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.325 T. What current is required to maintain this balance?
- -a) 2.596E-01 A
- -b) 2.855E-01 A
- +c) 3.141E-01 A
- -d) 3.455E-01 A
- -e) 3.801E-01 A
Click these links for the keys:
Key: R1
[edit | edit source]1) A 33 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.869 T. What current is required to maintain this balance?
- -a) 2.259E-01 A
- -b) 2.485E-01 A
- +c) 2.734E-01 A
- -d) 3.007E-01 A
- -e) 3.308E-01 A
2) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.265 T magnetic field is directed 26° away from the wire?
- -a) 3.840E-01 N/m
- -b) 4.224E-01 N/m
- +c) 4.647E-01 N/m
- -d) 5.111E-01 N/m
- -e) 5.623E-01 N/m
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 1.85 mT and 5.080E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 2.746E+06 m/s
- -b) 3.021E+06 m/s
- -c) 3.323E+06 m/s
- -d) 3.655E+06 m/s
- -e) 4.020E+06 m/s
4) A circular current loop of radius 2.84 cm carries a current of 3.01 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.174 T?
- -a) 1.075E-06 N m
- +b) 1.182E-06 N m
- -c) 1.301E-06 N m
- -d) 1.431E-06 N m
- -e) 1.574E-06 N m
Click these links for the keys:
Key: R2
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.59 mT and 4.340E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 1.676E+06 m/s
- -b) 1.843E+06 m/s
- -c) 2.028E+06 m/s
- -d) 2.230E+06 m/s
- -e) 2.453E+06 m/s
2) A 44 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.784 T. What current is required to maintain this balance?
- -a) 1.644E-01 A
- -b) 1.808E-01 A
- +c) 1.989E-01 A
- -d) 2.188E-01 A
- -e) 2.406E-01 A
3) A circular current loop of radius 3.25 cm carries a current of 2.78 mA. What is the magnitude of the torque if the dipole is oriented at 55 ° to a uniform magnetic fied of 0.523 T?
- -a) 2.699E-06 N m
- -b) 2.969E-06 N m
- -c) 3.266E-06 N m
- -d) 3.593E-06 N m
- +e) 3.952E-06 N m
4) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.394 T magnetic field is directed 14° away from the wire?
- -a) 6.302E-01 N/m
- -b) 6.932E-01 N/m
- +c) 7.625E-01 N/m
- -d) 8.388E-01 N/m
- -e) 9.227E-01 N/m
Click these links for the keys:
Key: S0
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.413 m and a magneticfield of 0.988 T. What is their maximum kinetic energy?
- -a) 6.029E+00 MeV
- -b) 6.631E+00 MeV
- -c) 7.295E+00 MeV
- +d) 8.024E+00 MeV
- -e) 8.827E+00 MeV
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.49 mT and 5.570E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- -a) 9.223E+05 m/s
- +b) 1.015E+06 m/s
- -c) 1.116E+06 m/s
- -d) 1.228E+06 m/s
- -e) 1.350E+06 m/s
- +a) 1.209E-06 V
- -b) 1.329E-06 V
- -c) 1.462E-06 V
- -d) 1.609E-06 V
- -e) 1.770E-06 V
4) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.851 T magnetic field is directed 65° away from the wire?
- -a) 4.908E+00 N/m
- +b) 5.399E+00 N/m
- -c) 5.939E+00 N/m
- -d) 6.533E+00 N/m
- -e) 7.186E+00 N/m
Click these links for the keys:
Key: S1
[edit | edit source]1) A long rigind wire carries a 4 A current. What is the magnetic force per unit length on the wire if a 0.893 T magnetic field is directed 66° away from the wire?
- -a) 2.697E+00 N/m
- -b) 2.967E+00 N/m
- +c) 3.263E+00 N/m
- -d) 3.590E+00 N/m
- -e) 3.948E+00 N/m
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- -a) 2.875E+00 MeV
- -b) 3.162E+00 MeV
- -c) 3.479E+00 MeV
- -d) 3.827E+00 MeV
- +e) 4.209E+00 MeV
- -a) 6.104E-06 V
- -b) 6.714E-06 V
- +c) 7.385E-06 V
- -d) 8.124E-06 V
- -e) 8.936E-06 V
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.13 mT and 2.810E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 6.804E+05 m/s
- -b) 7.484E+05 m/s
- -c) 8.233E+05 m/s
- -d) 9.056E+05 m/s
- -e) 9.962E+05 m/s
Click these links for the keys:
Key: S2
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.118 m and a magneticfield of 1.48 T. What is their maximum kinetic energy?
- -a) 1.004E+00 MeV
- -b) 1.104E+00 MeV
- -c) 1.215E+00 MeV
- -d) 1.336E+00 MeV
- +e) 1.470E+00 MeV
2) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.394 T magnetic field is directed 14° away from the wire?
- -a) 6.302E-01 N/m
- -b) 6.932E-01 N/m
- +c) 7.625E-01 N/m
- -d) 8.388E-01 N/m
- -e) 9.227E-01 N/m
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.15 mT and 4.440E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 1.070E+06 m/s
- -b) 1.177E+06 m/s
- -c) 1.295E+06 m/s
- -d) 1.424E+06 m/s
- -e) 1.566E+06 m/s
- +a) 1.209E-06 V
- -b) 1.329E-06 V
- -c) 1.462E-06 V
- -d) 1.609E-06 V
- -e) 1.770E-06 V
Click these links for the keys:
Key: T0
[edit | edit source]1) A charged particle in a magnetic field of 4.480E-04 T is moving perpendicular to the magnetic field with a speed of 7.700E+05 m/s. What is the period of orbit if orbital radius is 0.368 m?
- -a) 2.730E-06 s
- +b) 3.003E-06 s
- -c) 3.303E-06 s
- -d) 3.633E-06 s
- -e) 3.997E-06 s
2) A circular current loop of radius 2.1 cm carries a current of 5.02 mA. What is the magnitude of the torque if the dipole is oriented at 26 ° to a uniform magnetic fied of 0.184 T?
- +a) 5.610E-07 N m
- -b) 6.171E-07 N m
- -c) 6.788E-07 N m
- -d) 7.467E-07 N m
- -e) 8.213E-07 N m
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.62 mT and 2.120E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 8.092E+05 m/s
- -b) 8.901E+05 m/s
- -c) 9.791E+05 m/s
- -d) 1.077E+06 m/s
- -e) 1.185E+06 m/s
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 4.91 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(4.96 i + 6.81 j + 8.66 k) x 104 m/s?
- -a) 9.727E-14 N
- +b) 1.070E-13 N
- -c) 1.177E-13 N
- -d) 1.295E-13 N
- -e) 1.424E-13 N
Click these links for the keys:
Key: T1
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.23 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(3.84 i + 8.79 j + 9.05 k) x 104 m/s?
- -a) 7.509E-14 N
- -b) 8.259E-14 N
- +c) 9.085E-14 N
- -d) 9.994E-14 N
- -e) 1.099E-13 N
2) A charged particle in a magnetic field of 1.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.330E+05 m/s. What is the period of orbit if orbital radius is 0.893 m?
- -a) 2.189E-05 s
- +b) 2.408E-05 s
- -c) 2.649E-05 s
- -d) 2.914E-05 s
- -e) 3.205E-05 s
3) A circular current loop of radius 2.21 cm carries a current of 1.43 mA. What is the magnitude of the torque if the dipole is oriented at 67 ° to a uniform magnetic fied of 0.276 T?
- -a) 4.188E-07 N m
- -b) 4.607E-07 N m
- -c) 5.068E-07 N m
- +d) 5.574E-07 N m
- -e) 6.132E-07 N m
4) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 5.46 mT and 1.710E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 3.132E+05 m/s
- -b) 3.445E+05 m/s
- -c) 3.790E+05 m/s
- -d) 4.169E+05 m/s
- -e) 4.585E+05 m/s
Click these links for the keys:
Key: T2
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 4.91 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(4.96 i + 6.81 j + 8.66 k) x 104 m/s?
- -a) 9.727E-14 N
- +b) 1.070E-13 N
- -c) 1.177E-13 N
- -d) 1.295E-13 N
- -e) 1.424E-13 N
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.43 mT and 4.670E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 1.362E+06 m/s
- -b) 1.498E+06 m/s
- -c) 1.647E+06 m/s
- -d) 1.812E+06 m/s
- -e) 1.993E+06 m/s
3) A circular current loop of radius 3.0 cm carries a current of 1.58 mA. What is the magnitude of the torque if the dipole is oriented at 63 ° to a uniform magnetic fied of 0.408 T?
- -a) 1.476E-06 N m
- +b) 1.624E-06 N m
- -c) 1.786E-06 N m
- -d) 1.965E-06 N m
- -e) 2.162E-06 N m
4) A charged particle in a magnetic field of 3.600E-04 T is moving perpendicular to the magnetic field with a speed of 5.960E+05 m/s. What is the period of orbit if orbital radius is 0.397 m?
- -a) 3.805E-06 s
- +b) 4.185E-06 s
- -c) 4.604E-06 s
- -d) 5.064E-06 s
- -e) 5.571E-06 s
Click these links for the keys:
Key: U0
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.436 m and a magneticfield of 0.881 T. What is their maximum kinetic energy?
- -a) 5.342E+00 MeV
- -b) 5.877E+00 MeV
- -c) 6.464E+00 MeV
- +d) 7.111E+00 MeV
- -e) 7.822E+00 MeV
2) A 25 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.702 T. What current is required to maintain this balance?
- -a) 5.076E-01 A
- +b) 5.584E-01 A
- -c) 6.142E-01 A
- -d) 6.757E-01 A
- -e) 7.432E-01 A
- -a) 1.322E-06 V
- +b) 1.454E-06 V
- -c) 1.600E-06 V
- -d) 1.759E-06 V
- -e) 1.935E-06 V
4) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.22 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(2.85 i + 1.28 j + 8.49 k) x 104 m/s?
- -a) 2.222E-14 N
- -b) 2.444E-14 N
- -c) 2.688E-14 N
- +d) 2.957E-14 N
- -e) 3.253E-14 N
Click these links for the keys:
Key: U1
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.409 m and a magneticfield of 1.27 T. What is their maximum kinetic energy?
- -a) 8.881E+00 MeV
- -b) 9.769E+00 MeV
- -c) 1.075E+01 MeV
- -d) 1.182E+01 MeV
- +e) 1.300E+01 MeV
- -a) 7.153E-07 V
- -b) 7.869E-07 V
- -c) 8.655E-07 V
- +d) 9.521E-07 V
- -e) 1.047E-06 V
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 4.6 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(1.92 i + 1.55 j + 6.22 k) x 104 m/s?
- -a) 2.074E-14 N
- +b) 2.282E-14 N
- -c) 2.510E-14 N
- -d) 2.761E-14 N
- -e) 3.037E-14 N
4) A 11 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.809 T. What current is required to maintain this balance?
- +a) 1.432E+00 A
- -b) 1.575E+00 A
- -c) 1.732E+00 A
- -d) 1.905E+00 A
- -e) 2.096E+00 A
Click these links for the keys:
Key: U2
[edit | edit source]1) A 62 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.351 T. What current is required to maintain this balance?
- -a) 3.999E-01 A
- -b) 4.398E-01 A
- -c) 4.838E-01 A
- -d) 5.322E-01 A
- +e) 5.854E-01 A
- +a) 7.202E-06 V
- -b) 7.922E-06 V
- -c) 8.714E-06 V
- -d) 9.586E-06 V
- -e) 1.054E-05 V
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 9.76 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.97 i + 8.52 j + 9.46 k) x 104 m/s?
- -a) 2.199E-13 N
- -b) 2.419E-13 N
- +c) 2.661E-13 N
- -d) 2.927E-13 N
- -e) 3.220E-13 N
4) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- -a) 2.875E+00 MeV
- -b) 3.162E+00 MeV
- -c) 3.479E+00 MeV
- -d) 3.827E+00 MeV
- +e) 4.209E+00 MeV
Click these links for the keys:
Key: V0
[edit | edit source]1) A 96 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 10 g, and the magnitude of the magnetic field is 0.325 T. What current is required to maintain this balance?
- -a) 2.596E-01 A
- -b) 2.855E-01 A
- +c) 3.141E-01 A
- -d) 3.455E-01 A
- -e) 3.801E-01 A
2) A charged particle in a magnetic field of 4.090E-04 T is moving perpendicular to the magnetic field with a speed of 5.980E+05 m/s. What is the period of orbit if orbital radius is 0.633 m?
- -a) 4.543E-06 s
- -b) 4.997E-06 s
- -c) 5.497E-06 s
- -d) 6.046E-06 s
- +e) 6.651E-06 s
- -a) 6.100E-06 V
- -b) 6.710E-06 V
- -c) 7.381E-06 V
- -d) 8.120E-06 V
- +e) 8.931E-06 V
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0108 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- -a) 1.940E-06 s
- -b) 2.134E-06 s
- -c) 2.347E-06 s
- +d) 2.582E-06 s
- -e) 2.840E-06 s
Click these links for the keys:
Key: V1
[edit | edit source]- +a) 8.660E-06 V
- -b) 9.526E-06 V
- -c) 1.048E-05 V
- -d) 1.153E-05 V
- -e) 1.268E-05 V
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0582 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- +a) 4.791E-07 s
- -b) 5.271E-07 s
- -c) 5.798E-07 s
- -d) 6.377E-07 s
- -e) 7.015E-07 s
3) A 72 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 14 g, and the magnitude of the magnetic field is 0.54 T. What current is required to maintain this balance?
- -a) 2.651E-01 A
- -b) 2.916E-01 A
- -c) 3.208E-01 A
- +d) 3.529E-01 A
- -e) 3.882E-01 A
4) A charged particle in a magnetic field of 4.970E-04 T is moving perpendicular to the magnetic field with a speed of 2.950E+05 m/s. What is the period of orbit if orbital radius is 0.344 m?
- +a) 7.327E-06 s
- -b) 8.060E-06 s
- -c) 8.865E-06 s
- -d) 9.752E-06 s
- -e) 1.073E-05 s
Click these links for the keys:
Key: V2
[edit | edit source]1) A charged particle in a magnetic field of 3.410E-04 T is moving perpendicular to the magnetic field with a speed of 5.010E+05 m/s. What is the period of orbit if orbital radius is 0.508 m?
- -a) 5.792E-06 s
- +b) 6.371E-06 s
- -c) 7.008E-06 s
- -d) 7.709E-06 s
- -e) 8.480E-06 s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0631 T . It emerges after being deflected by 44° from its original direction. How much time did it spend in that magnetic field?
- -a) 1.897E-07 s
- -b) 2.087E-07 s
- -c) 2.296E-07 s
- +d) 2.525E-07 s
- -e) 2.778E-07 s
3) A 76 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.367 T. What current is required to maintain this balance?
- -a) 3.432E-01 A
- -b) 3.775E-01 A
- -c) 4.152E-01 A
- +d) 4.568E-01 A
- -e) 5.024E-01 A
- -a) 9.911E-06 V
- +b) 1.090E-05 V
- -c) 1.199E-05 V
- -d) 1.319E-05 V
- -e) 1.451E-05 V
Click these links for the keys:
Key: W0
[edit | edit source]- +a) 5.685E-06 V
- -b) 6.253E-06 V
- -c) 6.878E-06 V
- -d) 7.566E-06 V
- -e) 8.323E-06 V
2) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- -a) 2.875E+00 MeV
- -b) 3.162E+00 MeV
- -c) 3.479E+00 MeV
- -d) 3.827E+00 MeV
- +e) 4.209E+00 MeV
3) A circular current loop of radius 2.1 cm carries a current of 5.02 mA. What is the magnitude of the torque if the dipole is oriented at 26 ° to a uniform magnetic fied of 0.184 T?
- +a) 5.610E-07 N m
- -b) 6.171E-07 N m
- -c) 6.788E-07 N m
- -d) 7.467E-07 N m
- -e) 8.213E-07 N m
4) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.394 T magnetic field is directed 14° away from the wire?
- -a) 6.302E-01 N/m
- -b) 6.932E-01 N/m
- +c) 7.625E-01 N/m
- -d) 8.388E-01 N/m
- -e) 9.227E-01 N/m
Click these links for the keys:
Key: W1
[edit | edit source]- -a) 9.015E-06 V
- +b) 9.916E-06 V
- -c) 1.091E-05 V
- -d) 1.200E-05 V
- -e) 1.320E-05 V
2) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.405 T magnetic field is directed 48° away from the wire?
- -a) 1.131E+00 N/m
- -b) 1.244E+00 N/m
- -c) 1.368E+00 N/m
- +d) 1.505E+00 N/m
- -e) 1.655E+00 N/m
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.157 m and a magneticfield of 0.512 T. What is their maximum kinetic energy?
- -a) 2.574E-01 MeV
- -b) 2.831E-01 MeV
- +c) 3.114E-01 MeV
- -d) 3.425E-01 MeV
- -e) 3.768E-01 MeV
4) A circular current loop of radius 1.56 cm carries a current of 2.57 mA. What is the magnitude of the torque if the dipole is oriented at 38 ° to a uniform magnetic fied of 0.79 T?
- -a) 7.898E-07 N m
- -b) 8.688E-07 N m
- +c) 9.557E-07 N m
- -d) 1.051E-06 N m
- -e) 1.156E-06 N m
Click these links for the keys:
Key: W2
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.44 m and a magneticfield of 1.31 T. What is their maximum kinetic energy?
- -a) 1.323E+01 MeV
- -b) 1.456E+01 MeV
- +c) 1.601E+01 MeV
- -d) 1.761E+01 MeV
- -e) 1.937E+01 MeV
2) A circular current loop of radius 2.1 cm carries a current of 5.02 mA. What is the magnitude of the torque if the dipole is oriented at 26 ° to a uniform magnetic fied of 0.184 T?
- +a) 5.610E-07 N m
- -b) 6.171E-07 N m
- -c) 6.788E-07 N m
- -d) 7.467E-07 N m
- -e) 8.213E-07 N m
3) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- -a) 2.417E+00 N/m
- -b) 2.659E+00 N/m
- -c) 2.924E+00 N/m
- +d) 3.217E+00 N/m
- -e) 3.539E+00 N/m
- -a) 2.275E-06 V
- +b) 2.502E-06 V
- -c) 2.752E-06 V
- -d) 3.027E-06 V
- -e) 3.330E-06 V
Click these links for the keys:
Key: X0
[edit | edit source]1) A charged particle in a magnetic field of 3.820E-04 T is moving perpendicular to the magnetic field with a speed of 3.890E+05 m/s. What is the period of orbit if orbital radius is 0.718 m?
- -a) 8.713E-06 s
- -b) 9.584E-06 s
- -c) 1.054E-05 s
- +d) 1.160E-05 s
- -e) 1.276E-05 s
2) A long rigind wire carries a 7 A current. What is the magnetic force per unit length on the wire if a 0.851 T magnetic field is directed 65° away from the wire?
- -a) 4.908E+00 N/m
- +b) 5.399E+00 N/m
- -c) 5.939E+00 N/m
- -d) 6.533E+00 N/m
- -e) 7.186E+00 N/m
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0618 T . It emerges after being deflected by 67° from its original direction. How much time did it spend in that magnetic field?
- -a) 3.245E-07 s
- -b) 3.569E-07 s
- +c) 3.926E-07 s
- -d) 4.319E-07 s
- -e) 4.751E-07 s
- -a) 1.193E-06 V
- -b) 1.313E-06 V
- -c) 1.444E-06 V
- -d) 1.588E-06 V
- +e) 1.747E-06 V
Click these links for the keys:
Key: X1
[edit | edit source]- -a) 6.100E-06 V
- -b) 6.710E-06 V
- -c) 7.381E-06 V
- -d) 8.120E-06 V
- +e) 8.931E-06 V
2) A long rigind wire carries a 5 A current. What is the magnetic force per unit length on the wire if a 0.83 T magnetic field is directed 22° away from the wire?
- -a) 1.062E+00 N/m
- -b) 1.168E+00 N/m
- -c) 1.285E+00 N/m
- -d) 1.413E+00 N/m
- +e) 1.555E+00 N/m
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0883 T . It emerges after being deflected by 74° from its original direction. How much time did it spend in that magnetic field?
- -a) 2.280E-07 s
- -b) 2.508E-07 s
- -c) 2.759E-07 s
- +d) 3.035E-07 s
- -e) 3.339E-07 s
4) A charged particle in a magnetic field of 3.410E-04 T is moving perpendicular to the magnetic field with a speed of 5.010E+05 m/s. What is the period of orbit if orbital radius is 0.508 m?
- -a) 5.792E-06 s
- +b) 6.371E-06 s
- -c) 7.008E-06 s
- -d) 7.709E-06 s
- -e) 8.480E-06 s
Click these links for the keys:
Key: X2
[edit | edit source]1) A long rigind wire carries a 8 A current. What is the magnetic force per unit length on the wire if a 0.559 T magnetic field is directed 46° away from the wire?
- -a) 2.417E+00 N/m
- -b) 2.659E+00 N/m
- -c) 2.924E+00 N/m
- +d) 3.217E+00 N/m
- -e) 3.539E+00 N/m
- +a) 8.660E-06 V
- -b) 9.526E-06 V
- -c) 1.048E-05 V
- -d) 1.153E-05 V
- -e) 1.268E-05 V
3) A charged particle in a magnetic field of 6.400E-04 T is moving perpendicular to the magnetic field with a speed of 1.360E+05 m/s. What is the period of orbit if orbital radius is 0.751 m?
- -a) 3.154E-05 s
- +b) 3.470E-05 s
- -c) 3.817E-05 s
- -d) 4.198E-05 s
- -e) 4.618E-05 s
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.061 T . It emerges after being deflected by 75° from its original direction. How much time did it spend in that magnetic field?
- +a) 4.453E-07 s
- -b) 4.898E-07 s
- -c) 5.388E-07 s
- -d) 5.927E-07 s
- -e) 6.519E-07 s
Click these links for the keys:
Key: Y0
[edit | edit source]1) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 3.41 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.21 i + 5.39 j + 3.81 k) x 104 m/s?
- -a) 4.419E-14 N
- -b) 4.861E-14 N
- -c) 5.347E-14 N
- +d) 5.882E-14 N
- -e) 6.470E-14 N
2) A 11 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 13 g, and the magnitude of the magnetic field is 0.809 T. What current is required to maintain this balance?
- +a) 1.432E+00 A
- -b) 1.575E+00 A
- -c) 1.732E+00 A
- -d) 1.905E+00 A
- -e) 2.096E+00 A
3) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 3.43 mT and 4.670E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 1.362E+06 m/s
- -b) 1.498E+06 m/s
- -c) 1.647E+06 m/s
- -d) 1.812E+06 m/s
- -e) 1.993E+06 m/s
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0108 T . It emerges after being deflected by 77° from its original direction. How much time did it spend in that magnetic field?
- -a) 1.940E-06 s
- -b) 2.134E-06 s
- -c) 2.347E-06 s
- +d) 2.582E-06 s
- -e) 2.840E-06 s
Click these links for the keys:
Key: Y1
[edit | edit source]1) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 2.59 mT and 4.340E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 1.676E+06 m/s
- -b) 1.843E+06 m/s
- -c) 2.028E+06 m/s
- -d) 2.230E+06 m/s
- -e) 2.453E+06 m/s
2) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 7.83 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(6.16 i + 2.1 j + 1.74 k) x 104 m/s?
- -a) 4.783E-14 N
- +b) 5.262E-14 N
- -c) 5.788E-14 N
- -d) 6.367E-14 N
- -e) 7.003E-14 N
3) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0631 T . It emerges after being deflected by 44° from its original direction. How much time did it spend in that magnetic field?
- -a) 1.897E-07 s
- -b) 2.087E-07 s
- -c) 2.296E-07 s
- +d) 2.525E-07 s
- -e) 2.778E-07 s
4) A 27 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 8 g, and the magnitude of the magnetic field is 0.85 T. What current is required to maintain this balance?
- -a) 3.106E-01 A
- +b) 3.416E-01 A
- -c) 3.758E-01 A
- -d) 4.134E-01 A
- -e) 4.547E-01 A
Click these links for the keys:
Key: Y2
[edit | edit source]1) A 44 cm-long horizontal wire is maintained in static equilibrium by a horizontally directed magnetic field that is perpendicular to the wire (and to Earth's gravity). The mass of the wire is 7 g, and the magnitude of the magnetic field is 0.784 T. What current is required to maintain this balance?
- -a) 1.644E-01 A
- -b) 1.808E-01 A
- +c) 1.989E-01 A
- -d) 2.188E-01 A
- -e) 2.406E-01 A
2) An electron beam (m=9.1 x 10−31kg, q=1.6 x 10−19C) enters a crossed-field velocity selector with magnetic and electric fields of 4.15 mT and 4.440E+03 N/C, respectively. What must the velocity of the electron beam be to transverse the crossed fields undeflected ?
- +a) 1.070E+06 m/s
- -b) 1.177E+06 m/s
- -c) 1.295E+06 m/s
- -d) 1.424E+06 m/s
- -e) 1.566E+06 m/s
3) An alpha-particle (q=3.2x10−19C) moves through a uniform magnetic field that is parallel to the positive z-axis with magnitude 4.69 T. What is the x-component of the force on the alpha-particle if it is moving with a velocity
(8.9 i + 4.27 j + 7.52 k) x 104 m/s?
- -a) 5.296E-14 N
- -b) 5.826E-14 N
- +c) 6.408E-14 N
- -d) 7.049E-14 N
- -e) 7.754E-14 N
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0887 T . It emerges after being deflected by 69° from its original direction. How much time did it spend in that magnetic field?
- -a) 2.561E-07 s
- +b) 2.817E-07 s
- -c) 3.099E-07 s
- -d) 3.409E-07 s
- -e) 3.750E-07 s
Click these links for the keys:
Key: Z0
[edit | edit source]- +a) 1.209E-06 V
- -b) 1.329E-06 V
- -c) 1.462E-06 V
- -d) 1.609E-06 V
- -e) 1.770E-06 V
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0454 T . It emerges after being deflected by 74° from its original direction. How much time did it spend in that magnetic field?
- -a) 4.878E-07 s
- -b) 5.366E-07 s
- +c) 5.903E-07 s
- -d) 6.493E-07 s
- -e) 7.143E-07 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.376 m and a magneticfield of 0.786 T. What is their maximum kinetic energy?
- -a) 2.875E+00 MeV
- -b) 3.162E+00 MeV
- -c) 3.479E+00 MeV
- -d) 3.827E+00 MeV
- +e) 4.209E+00 MeV
4) A charged particle in a magnetic field of 1.750E-04 T is moving perpendicular to the magnetic field with a speed of 2.330E+05 m/s. What is the period of orbit if orbital radius is 0.893 m?
- -a) 2.189E-05 s
- +b) 2.408E-05 s
- -c) 2.649E-05 s
- -d) 2.914E-05 s
- -e) 3.205E-05 s
Click these links for the keys:
Key: Z1
[edit | edit source]1) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.436 m and a magneticfield of 0.881 T. What is their maximum kinetic energy?
- -a) 5.342E+00 MeV
- -b) 5.877E+00 MeV
- -c) 6.464E+00 MeV
- +d) 7.111E+00 MeV
- -e) 7.822E+00 MeV
2) A charged particle in a magnetic field of 4.090E-04 T is moving perpendicular to the magnetic field with a speed of 5.980E+05 m/s. What is the period of orbit if orbital radius is 0.633 m?
- -a) 4.543E-06 s
- -b) 4.997E-06 s
- -c) 5.497E-06 s
- -d) 6.046E-06 s
- +e) 6.651E-06 s
- -a) 1.193E-06 V
- -b) 1.313E-06 V
- -c) 1.444E-06 V
- -d) 1.588E-06 V
- +e) 1.747E-06 V
4) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0243 T . It emerges after being deflected by 82° from its original direction. How much time did it spend in that magnetic field?
- +a) 1.222E-06 s
- -b) 1.344E-06 s
- -c) 1.479E-06 s
- -d) 1.627E-06 s
- -e) 1.789E-06 s
Click these links for the keys:
Key: Z2
[edit | edit source]1) A charged particle in a magnetic field of 4.480E-04 T is moving perpendicular to the magnetic field with a speed of 7.700E+05 m/s. What is the period of orbit if orbital radius is 0.368 m?
- -a) 2.730E-06 s
- +b) 3.003E-06 s
- -c) 3.303E-06 s
- -d) 3.633E-06 s
- -e) 3.997E-06 s
2) An alpha-particle (m=6.64x10−27kg, q=3.2x10−19C) briefly enters a uniform magnetic field of magnitude 0.0887 T . It emerges after being deflected by 69° from its original direction. How much time did it spend in that magnetic field?
- -a) 2.561E-07 s
- +b) 2.817E-07 s
- -c) 3.099E-07 s
- -d) 3.409E-07 s
- -e) 3.750E-07 s
3) A cyclotron used to accelerate alpha particlesm=6.64 x 10−27kg, q=3.2 x 10−19C) has a radius of 0.388 m and a magneticfield of 1.19 T. What is their maximum kinetic energy?
- -a) 8.491E+00 MeV
- -b) 9.340E+00 MeV
- +c) 1.027E+01 MeV
- -d) 1.130E+01 MeV
- -e) 1.243E+01 MeV
- +a) 7.202E-06 V
- -b) 7.922E-06 V
- -c) 8.714E-06 V
- -d) 9.586E-06 V
- -e) 1.054E-05 V
Click these links for the keys: