# Quizbank/Electricity and Magnetism (calculus based)/c10

calcPhyEMq/c10 ID153287923206 (Study guide)

Exams:

78 Tests = 3 versions x 26 variations: Each of the 26 variations (A, B, ...) represents a different random selection of questions taken from the study guide.The 3 versions (0,1,..) all have the same questions but in different order and with different numerical inputs. Unless all students take version "0" it is best to reserve it for the instructor because the questions are grouped according to the order in which they appear on the study guide.

Contact me at User talk:Guy vandegrift if you need any help.

### c10 A0

1)
Two sources of emf ε1=40.9 V, and ε2=16.1 V are oriented as shownin the circuit. The resistances are R1=5.55 kΩ and R2=1.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.11 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.754E+00 V
b) 9.630E+00 V
c) 1.059E+01 V
d) 1.165E+01 V
e) 1.282E+01 V
2)
In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
a) 1.713E+01 W
b) 1.885E+01 W
c) 2.073E+01 W
d) 2.280E+01 W
e) 2.508E+01 W
3)
The resistances in the figure shown are R1= 1.6 Ω, R2= 1.3 Ω, and R2= 2.22 Ω. V1 and V3 are text 0.55 V and 3.18 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.743 V. What is the absolute value of the current through R1?
a) 1.721E-01 A
b) 1.893E-01 A
c) 2.082E-01 A
d) 2.291E-01 A
e) 2.520E-01 A
4)
Two sources of emf ε1=43.0 V, and ε2=13.8 V are oriented as shownin the circuit. The resistances are R1=3.97 kΩ and R2=1.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.25 mA and I4=1.82 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 3.661E+00 mA
b) 4.027E+00 mA
c) 4.430E+00 mA
d) 4.873E+00 mA
e) 5.360E+00 mA

#### c10 A1

1)
Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.299E+00 mA
b) 1.429E+00 mA
c) 1.572E+00 mA
d) 1.729E+00 mA
e) 1.902E+00 mA
2)
The resistances in the figure shown are R1= 1.33 Ω, R2= 1.72 Ω, and R2= 3.69 Ω. V1 and V3 are text 0.606 V and 3.31 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.608 V. What is the absolute value of the current through R1?
a) 1.137E-01 A
b) 1.251E-01 A
c) 1.376E-01 A
d) 1.514E-01 A
e) 1.665E-01 A
3)
In the circuit shown V=16.2 V, R1=2.84 Ω, R2=7.06 Ω, and R3=13.1 Ω. What is the power dissipated by R2?
a) 1.418E+01 W
b) 1.560E+01 W
c) 1.716E+01 W
d) 1.887E+01 W
e) 2.076E+01 W
4)
Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.380E+01 V
b) 1.518E+01 V
c) 1.670E+01 V
d) 1.837E+01 V
e) 2.020E+01 V

#### c10 A2

1)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
2)
Two sources of emf ε1=40.7 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=3.5 kΩ and R2=1.94 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.42 mA and I4=0.932 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.440E+01 V
b) 1.584E+01 V
c) 1.742E+01 V
d) 1.916E+01 V
e) 2.108E+01 V
3)
Two sources of emf ε1=24.8 V, and ε2=10.3 V are oriented as shownin the circuit. The resistances are R1=2.19 kΩ and R2=1.6 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.49 mA and I4=0.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.660E+00 mA
b) 1.826E+00 mA
c) 2.009E+00 mA
d) 2.209E+00 mA
e) 2.430E+00 mA
4)
In the circuit shown V=15.4 V, R1=2.77 Ω, R2=6.07 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
a) 1.190E+01 W
b) 1.309E+01 W
c) 1.440E+01 W
d) 1.584E+01 W
e) 1.742E+01 W

### c10 B0

1)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A
2)
In the circuit shown V=18.4 V, R1=1.64 Ω, R2=6.56 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
a) 2.470E+01 W
b) 2.717E+01 W
c) 2.989E+01 W
d) 3.288E+01 W
e) 3.617E+01 W
3)
Two sources of emf ε1=46.1 V, and ε2=16.2 V are oriented as shownin the circuit. The resistances are R1=5.17 kΩ and R2=2.06 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.97 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.309E+01 V
b) 1.440E+01 V
c) 1.584E+01 V
d) 1.742E+01 V
e) 1.917E+01 V

4) A given battery has a 12 V emf and an internal resistance of 0.107 Ω. If it is connected to a 0.814 Ω resistor what is the power dissipated by that load?

a) 1.382E+02 W
b) 1.520E+02 W
c) 1.672E+02 W
d) 1.839E+02 W
e) 2.023E+02 W

#### c10 B1

1)
The resistances in the figure shown are R1= 1.6 Ω, R2= 1.3 Ω, and R2= 2.22 Ω. V1 and V3 are text 0.55 V and 3.18 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.743 V. What is the absolute value of the current through R1?
a) 1.721E-01 A
b) 1.893E-01 A
c) 2.082E-01 A
d) 2.291E-01 A
e) 2.520E-01 A

2) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?

a) 1.419E+02 W
b) 1.561E+02 W
c) 1.717E+02 W
d) 1.889E+02 W
e) 2.078E+02 W
3)
Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.334E+00 V
b) 9.167E+00 V
c) 1.008E+01 V
d) 1.109E+01 V
e) 1.220E+01 V
4)
In the circuit shown V=15.8 V, R1=1.86 Ω, R2=7.66 Ω, and R3=12.9 Ω. What is the power dissipated by R2?
a) 1.157E+01 W
b) 1.273E+01 W
c) 1.400E+01 W
d) 1.540E+01 W
e) 1.694E+01 W

#### c10 B2

1)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A
2)
In the circuit shown V=10.9 V, R1=1.68 Ω, R2=7.52 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
a) 7.827E+00 W
b) 8.610E+00 W
c) 9.470E+00 W
d) 1.042E+01 W
e) 1.146E+01 W

3) A given battery has a 15 V emf and an internal resistance of 0.113 Ω. If it is connected to a 0.645 Ω resistor what is the power dissipated by that load?

a) 1.898E+02 W
b) 2.087E+02 W
c) 2.296E+02 W
d) 2.526E+02 W
e) 2.778E+02 W
4)
Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.334E+00 V
b) 9.167E+00 V
c) 1.008E+01 V
d) 1.109E+01 V
e) 1.220E+01 V

### c10 C0

1) Three resistors, R1 = 0.672 Ω, and R2 = R2 = 1.52 Ω, are connected in parallel to a 5.34 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 2.898E+01 W
b) 3.188E+01 W
c) 3.507E+01 W
d) 3.858E+01 W
e) 4.243E+01 W
2)
Two sources of emf ε1=49.8 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=2.78 kΩ and R2=2.63 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.51 mA and I4=0.969 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 7.886E+00 V
b) 8.675E+00 V
c) 9.542E+00 V
d) 1.050E+01 V
e) 1.155E+01 V

3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?

a) 1.234E+00 V
b) 1.358E+00 V
c) 1.493E+00 V
d) 1.643E+00 V
e) 1.807E+00 V
4)
Two sources of emf ε1=13.6 V, and ε2=6.53 V are oriented as shownin the circuit. The resistances are R1=2.89 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.11 mA and I4=0.311 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 7.264E-01 mA
b) 7.990E-01 mA
c) 8.789E-01 mA
d) 9.668E-01 mA
e) 1.063E+00 mA

#### c10 C1

1)
Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.247E+00 mA
b) 2.472E+00 mA
c) 2.719E+00 mA
d) 2.991E+00 mA
e) 3.290E+00 mA

2) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 5.184E+01 W
b) 5.702E+01 W
c) 6.272E+01 W
d) 6.900E+01 W
e) 7.590E+01 W
3)
Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.093E+01 V
b) 1.202E+01 V
c) 1.322E+01 V
d) 1.454E+01 V
e) 1.600E+01 V

4) A battery with a terminal voltage of 8.72 V is connected to a circuit consisting of 2 15.8 Ω resistors and one 9.58 Ω resistor. What is the voltage drop across the 9.58 Ω resistor?

a) 1.677E+00 V
b) 1.844E+00 V
c) 2.029E+00 V
d) 2.231E+00 V
e) 2.455E+00 V

#### c10 C2

1)
Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.247E+00 mA
b) 2.472E+00 mA
c) 2.719E+00 mA
d) 2.991E+00 mA
e) 3.290E+00 mA
2)
Two sources of emf ε1=49.8 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=2.78 kΩ and R2=2.63 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.51 mA and I4=0.969 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 7.886E+00 V
b) 8.675E+00 V
c) 9.542E+00 V
d) 1.050E+01 V
e) 1.155E+01 V

3) Three resistors, R1 = 0.548 Ω, and R2 = R2 = 1.24 Ω, are connected in parallel to a 7.16 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 7.029E+01 W
b) 7.731E+01 W
c) 8.505E+01 W
d) 9.355E+01 W
e) 1.029E+02 W

4) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?

a) 1.370E+00 V
b) 1.507E+00 V
c) 1.658E+00 V
d) 1.824E+00 V
e) 2.006E+00 V

### c10 D0

1)
The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
a) 1.401E-01 A
b) 1.542E-01 A
c) 1.696E-01 A
d) 1.865E-01 A
e) 2.052E-01 A

2) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?

a) 2.467E+00 V
b) 2.714E+00 V
c) 2.985E+00 V
d) 3.283E+00 V
e) 3.612E+00 V
3)
Two sources of emf ε1=16.8 V, and ε2=6.85 V are oriented as shownin the circuit. The resistances are R1=4.43 kΩ and R2=1.24 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.68 mA and I4=0.758 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 3.890E+00 V
b) 4.279E+00 V
c) 4.707E+00 V
d) 5.178E+00 V
e) 5.695E+00 V

4) A given battery has a 15 V emf and an internal resistance of 0.177 Ω. If it is connected to a 0.824 Ω resistor what is the power dissipated by that load?

a) 1.682E+02 W
b) 1.850E+02 W
c) 2.035E+02 W
d) 2.239E+02 W
e) 2.463E+02 W

#### c10 D1

1)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
2)
Two sources of emf ε1=26.2 V, and ε2=11.5 V are oriented as shownin the circuit. The resistances are R1=2.13 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.11 mA and I4=0.746 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.275E+00 V
b) 4.703E+00 V
c) 5.173E+00 V
d) 5.691E+00 V
e) 6.260E+00 V

3) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?

a) 1.455E+02 W
b) 1.601E+02 W
c) 1.761E+02 W
d) 1.937E+02 W
e) 2.131E+02 W

4) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?

a) 2.352E+00 V
b) 2.587E+00 V
c) 2.846E+00 V
d) 3.131E+00 V
e) 3.444E+00 V

#### c10 D2

1) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?

a) 2.467E+00 V
b) 2.714E+00 V
c) 2.985E+00 V
d) 3.283E+00 V
e) 3.612E+00 V
2)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A
3)
Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.108E+00 V
b) 4.519E+00 V
c) 4.970E+00 V
d) 5.468E+00 V
e) 6.014E+00 V

4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?

a) 1.229E+02 W
b) 1.352E+02 W
c) 1.487E+02 W
d) 1.636E+02 W
e) 1.799E+02 W

### c10 E0

1)
In the circuit shown V=18.4 V, R1=1.64 Ω, R2=6.56 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
a) 2.470E+01 W
b) 2.717E+01 W
c) 2.989E+01 W
d) 3.288E+01 W
e) 3.617E+01 W
2)
Two sources of emf ε1=42.2 V, and ε2=17.8 V are oriented as shownin the circuit. The resistances are R1=4.2 kΩ and R2=2.83 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.5 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.056E+01 V
b) 1.161E+01 V
c) 1.277E+01 V
d) 1.405E+01 V
e) 1.545E+01 V

3) A given battery has a 14 V emf and an internal resistance of 0.132 Ω. If it is connected to a 0.689 Ω resistor what is the power dissipated by that load?

a) 1.656E+02 W
b) 1.821E+02 W
c) 2.003E+02 W
d) 2.204E+02 W
e) 2.424E+02 W
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
a) 5.401E+00 s
b) 5.941E+00 s
c) 6.535E+00 s
d) 7.189E+00 s
e) 7.908E+00 s

#### c10 E1

1) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?

a) 1.455E+02 W
b) 1.601E+02 W
c) 1.761E+02 W
d) 1.937E+02 W
e) 2.131E+02 W
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
a) 1.385E+01 s
b) 1.524E+01 s
c) 1.676E+01 s
d) 1.844E+01 s
e) 2.028E+01 s
3)
In the circuit shown V=16.1 V, R1=1.18 Ω, R2=5.28 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
a) 2.172E+01 W
b) 2.389E+01 W
c) 2.628E+01 W
d) 2.891E+01 W
e) 3.180E+01 W
4)
Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.380E+01 V
b) 1.518E+01 V
c) 1.670E+01 V
d) 1.837E+01 V
e) 2.020E+01 V

#### c10 E2

1) A given battery has a 15 V emf and an internal resistance of 0.162 Ω. If it is connected to a 0.561 Ω resistor what is the power dissipated by that load?

a) 1.814E+02 W
b) 1.996E+02 W
c) 2.195E+02 W
d) 2.415E+02 W
e) 2.656E+02 W
2)
Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.380E+01 V
b) 1.518E+01 V
c) 1.670E+01 V
d) 1.837E+01 V
e) 2.020E+01 V
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 598 V. If the combined external and internal resistance is 170 &Omega and the capacitance is 73 mF, how long will it take for the capacitor's voltage to reach 436.0 V?
a) 1.218E+01 s
b) 1.339E+01 s
c) 1.473E+01 s
d) 1.621E+01 s
e) 1.783E+01 s
4)
In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
a) 1.446E+01 W
b) 1.591E+01 W
c) 1.750E+01 W
d) 1.925E+01 W
e) 2.117E+01 W

### c10 F0

1)
Two sources of emf ε1=38.9 V, and ε2=15.7 V are oriented as shownin the circuit. The resistances are R1=2.24 kΩ and R2=2.23 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.01 mA and I4=0.86 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.955E+00 mA
b) 2.150E+00 mA
c) 2.365E+00 mA
d) 2.601E+00 mA
e) 2.862E+00 mA
2)
In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
a) 7.123E+00 W
b) 7.835E+00 W
c) 8.618E+00 W
d) 9.480E+00 W
e) 1.043E+01 W
3)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A

4) A battery with a terminal voltage of 13.2 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.3 Ω resistor. What is the voltage drop across the 10.3 Ω resistor?

a) 1.958E+00 V
b) 2.153E+00 V
c) 2.369E+00 V
d) 2.606E+00 V
e) 2.866E+00 V

#### c10 F1

1)
The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
a) 1.401E-01 A
b) 1.542E-01 A
c) 1.696E-01 A
d) 1.865E-01 A
e) 2.052E-01 A
2)
Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.150E+00 mA
b) 2.365E+00 mA
c) 2.602E+00 mA
d) 2.862E+00 mA
e) 3.148E+00 mA

3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?

a) 1.234E+00 V
b) 1.358E+00 V
c) 1.493E+00 V
d) 1.643E+00 V
e) 1.807E+00 V
4)
In the circuit shown V=16.1 V, R1=1.18 Ω, R2=5.28 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
a) 2.172E+01 W
b) 2.389E+01 W
c) 2.628E+01 W
d) 2.891E+01 W
e) 3.180E+01 W

#### c10 F2

1)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
2)
Two sources of emf ε1=49.6 V, and ε2=19.3 V are oriented as shownin the circuit. The resistances are R1=4.87 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.37 mA and I4=1.01 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 3.055E+00 mA
b) 3.360E+00 mA
c) 3.696E+00 mA
d) 4.066E+00 mA
e) 4.472E+00 mA

3) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?

a) 1.202E+00 V
b) 1.323E+00 V
c) 1.455E+00 V
d) 1.600E+00 V
e) 1.761E+00 V
4)
In the circuit shown V=17.9 V, R1=1.68 Ω, R2=7.84 Ω, and R3=12.3 Ω. What is the power dissipated by R2?
a) 2.240E+01 W
b) 2.464E+01 W
c) 2.710E+01 W
d) 2.981E+01 W
e) 3.279E+01 W

### c10 G0

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 130 V. If the combined external and internal resistance is 109 &Omega and the capacitance is 59 mF, how long will it take for the capacitor's voltage to reach 69.9 V?
a) 3.728E+00 s
b) 4.101E+00 s
c) 4.511E+00 s
d) 4.962E+00 s
e) 5.458E+00 s
2)
Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.921E+01 V
b) 2.114E+01 V
c) 2.325E+01 V
d) 2.557E+01 V
e) 2.813E+01 V
3)
The resistances in the figure shown are R1= 2.49 Ω, R2= 1.72 Ω, and R2= 3.58 Ω. V1 and V3 are text 0.417 V and 1.83 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.53 V. What is the absolute value of the current through R1?
a) 8.220E-02 A
b) 9.042E-02 A
c) 9.946E-02 A
d) 1.094E-01 A
e) 1.203E-01 A

4) A given battery has a 10 V emf and an internal resistance of 0.119 Ω. If it is connected to a 0.445 Ω resistor what is the power dissipated by that load?

a) 1.272E+02 W
b) 1.399E+02 W
c) 1.539E+02 W
d) 1.693E+02 W
e) 1.862E+02 W

#### c10 G1

1) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?

a) 1.419E+02 W
b) 1.561E+02 W
c) 1.717E+02 W
d) 1.889E+02 W
e) 2.078E+02 W
2)
Two sources of emf ε1=30.6 V, and ε2=12.0 V are oriented as shownin the circuit. The resistances are R1=3.46 kΩ and R2=2.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.97 mA and I4=0.643 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.986E+00 V
b) 5.484E+00 V
c) 6.033E+00 V
d) 6.636E+00 V
e) 7.299E+00 V
3)
The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
a) 8.147E-02 A
b) 8.962E-02 A
c) 9.858E-02 A
d) 1.084E-01 A
e) 1.193E-01 A
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
a) 1.385E+01 s
b) 1.524E+01 s
c) 1.676E+01 s
d) 1.844E+01 s
e) 2.028E+01 s

#### c10 G2

1)
The resistances in the figure shown are R1= 1.54 Ω, R2= 0.927 Ω, and R2= 2.46 Ω. V1 and V3 are text 0.632 V and 2.12 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.586 V. What is the absolute value of the current through R1?
a) 1.770E-01 A
b) 1.947E-01 A
c) 2.141E-01 A
d) 2.355E-01 A
e) 2.591E-01 A
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
a) 1.905E+01 s
b) 2.095E+01 s
c) 2.304E+01 s
d) 2.535E+01 s
e) 2.788E+01 s
3)
Two sources of emf ε1=26.2 V, and ε2=11.5 V are oriented as shownin the circuit. The resistances are R1=2.13 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.11 mA and I4=0.746 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.275E+00 V
b) 4.703E+00 V
c) 5.173E+00 V
d) 5.691E+00 V
e) 6.260E+00 V

4) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?

a) 1.455E+02 W
b) 1.601E+02 W
c) 1.761E+02 W
d) 1.937E+02 W
e) 2.131E+02 W

### c10 H0

1)
The resistances in the figure shown are R1= 2.34 Ω, R2= 1.34 Ω, and R2= 2.94 Ω. V1 and V3 are text 0.609 V and 1.68 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.541 V. What is the absolute value of the current through R1?
a) 1.464E-01 A
b) 1.610E-01 A
c) 1.772E-01 A
d) 1.949E-01 A
e) 2.144E-01 A

2) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 2.293E+01 W
b) 2.522E+01 W
c) 2.774E+01 W
d) 3.052E+01 W
e) 3.357E+01 W
3)
Two sources of emf ε1=38.9 V, and ε2=16.9 V are oriented as shownin the circuit. The resistances are R1=3.3 kΩ and R2=2.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.34 mA and I4=0.955 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 7.031E+00 V
b) 7.734E+00 V
c) 8.507E+00 V
d) 9.358E+00 V
e) 1.029E+01 V

4) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?

a) 1.709E+00 V
b) 1.880E+00 V
c) 2.068E+00 V
d) 2.275E+00 V
e) 2.503E+00 V

#### c10 H1

1)
The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
a) 1.834E-01 A
b) 2.018E-01 A
c) 2.220E-01 A
d) 2.441E-01 A
e) 2.686E-01 A
2)
Two sources of emf ε1=38.8 V, and ε2=14.9 V are oriented as shownin the circuit. The resistances are R1=5.83 kΩ and R2=1.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.57 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.013E+01 V
b) 1.115E+01 V
c) 1.226E+01 V
d) 1.349E+01 V
e) 1.484E+01 V

3) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 2.293E+01 W
b) 2.522E+01 W
c) 2.774E+01 W
d) 3.052E+01 W
e) 3.357E+01 W

4) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?

a) 1.370E+00 V
b) 1.507E+00 V
c) 1.658E+00 V
d) 1.824E+00 V
e) 2.006E+00 V

#### c10 H2

1)
Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.921E+01 V
b) 2.114E+01 V
c) 2.325E+01 V
d) 2.557E+01 V
e) 2.813E+01 V
2)
The resistances in the figure shown are R1= 2.67 Ω, R2= 1.78 Ω, and R2= 3.63 Ω. V1 and V3 are text 0.448 V and 2.29 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.656 V. What is the absolute value of the current through R1?
a) 9.287E-02 A
b) 1.022E-01 A
c) 1.124E-01 A
d) 1.236E-01 A
e) 1.360E-01 A

3) Three resistors, R1 = 1.41 Ω, and R2 = R2 = 3.17 Ω, are connected in parallel to a 5.89 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 1.681E+01 W
b) 1.849E+01 W
c) 2.033E+01 W
d) 2.237E+01 W
e) 2.460E+01 W

4) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?

a) 1.709E+00 V
b) 1.880E+00 V
c) 2.068E+00 V
d) 2.275E+00 V
e) 2.503E+00 V

### c10 I0

1)
Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.108E+00 V
b) 4.519E+00 V
c) 4.970E+00 V
d) 5.468E+00 V
e) 6.014E+00 V
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
a) 9.718E+00 s
b) 1.069E+01 s
c) 1.176E+01 s
d) 1.293E+01 s
e) 1.423E+01 s

3) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?

a) 2.467E+00 V
b) 2.714E+00 V
c) 2.985E+00 V
d) 3.283E+00 V
e) 3.612E+00 V
4)
Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.825E+00 V
b) 9.708E+00 V
c) 1.068E+01 V
d) 1.175E+01 V
e) 1.292E+01 V

#### c10 I1

1)
Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 5.267E+00 V
b) 5.794E+00 V
c) 6.373E+00 V
d) 7.011E+00 V
e) 7.712E+00 V

2) A battery with a terminal voltage of 12.4 V is connected to a circuit consisting of 3 21.6 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?

a) 1.333E+00 V
b) 1.466E+00 V
c) 1.612E+00 V
d) 1.774E+00 V
e) 1.951E+00 V
3)
Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.981E+01 V
b) 2.179E+01 V
c) 2.397E+01 V
d) 2.637E+01 V
e) 2.901E+01 V
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
a) 5.401E+00 s
b) 5.941E+00 s
c) 6.535E+00 s
d) 7.189E+00 s
e) 7.908E+00 s

#### c10 I2

1)
Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 5.267E+00 V
b) 5.794E+00 V
c) 6.373E+00 V
d) 7.011E+00 V
e) 7.712E+00 V

2) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?

a) 2.467E+00 V
b) 2.714E+00 V
c) 2.985E+00 V
d) 3.283E+00 V
e) 3.612E+00 V
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
a) 1.905E+01 s
b) 2.095E+01 s
c) 2.304E+01 s
d) 2.535E+01 s
e) 2.788E+01 s
4)
Two sources of emf ε1=42.2 V, and ε2=17.8 V are oriented as shownin the circuit. The resistances are R1=4.2 kΩ and R2=2.83 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.5 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.056E+01 V
b) 1.161E+01 V
c) 1.277E+01 V
d) 1.405E+01 V
e) 1.545E+01 V

### c10 J0

1)
The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
a) 8.147E-02 A
b) 8.962E-02 A
c) 9.858E-02 A
d) 1.084E-01 A
e) 1.193E-01 A

2) Three resistors, R1 = 0.61 Ω, and R2 = R2 = 1.35 Ω, are connected in parallel to a 7.04 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 7.386E+01 W
b) 8.125E+01 W
c) 8.937E+01 W
d) 9.831E+01 W
e) 1.081E+02 W

3) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?

a) 1.370E+00 V
b) 1.507E+00 V
c) 1.658E+00 V
d) 1.824E+00 V
e) 2.006E+00 V
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
a) 1.905E+01 s
b) 2.095E+01 s
c) 2.304E+01 s
d) 2.535E+01 s
e) 2.788E+01 s

#### c10 J1

1) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 6.977E+01 W
b) 7.674E+01 W
c) 8.442E+01 W
d) 9.286E+01 W
e) 1.021E+02 W
2)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
a) 1.203E-01 A
b) 1.324E-01 A
c) 1.456E-01 A
d) 1.602E-01 A
e) 1.762E-01 A

3) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?

a) 2.843E+00 V
b) 3.127E+00 V
c) 3.440E+00 V
d) 3.784E+00 V
e) 4.162E+00 V
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
a) 1.296E+01 s
b) 1.425E+01 s
c) 1.568E+01 s
d) 1.725E+01 s
e) 1.897E+01 s

#### c10 J2

1)
The resistances in the figure shown are R1= 1.18 Ω, R2= 0.878 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.637 V and 3.51 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.547 V. What is the absolute value of the current through R1?
a) 1.701E-01 A
b) 1.871E-01 A
c) 2.058E-01 A
d) 2.264E-01 A
e) 2.490E-01 A

2) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 4.890E+01 W
b) 5.379E+01 W
c) 5.917E+01 W
d) 6.508E+01 W
e) 7.159E+01 W

3) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?

a) 1.202E+00 V
b) 1.323E+00 V
c) 1.455E+00 V
d) 1.600E+00 V
e) 1.761E+00 V
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 130 V. If the combined external and internal resistance is 109 &Omega and the capacitance is 59 mF, how long will it take for the capacitor's voltage to reach 69.9 V?
a) 3.728E+00 s
b) 4.101E+00 s
c) 4.511E+00 s
d) 4.962E+00 s
e) 5.458E+00 s

### c10 K0

1)
In the circuit shown V=10.9 V, R1=1.68 Ω, R2=7.52 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
a) 7.827E+00 W
b) 8.610E+00 W
c) 9.470E+00 W
d) 1.042E+01 W
e) 1.146E+01 W
2)
Two sources of emf ε1=24.4 V, and ε2=6.73 V are oriented as shownin the circuit. The resistances are R1=5.7 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.36 mA and I4=0.418 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 5.418E+00 V
b) 5.960E+00 V
c) 6.556E+00 V
d) 7.212E+00 V
e) 7.933E+00 V
3)
The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
a) 1.834E-01 A
b) 2.018E-01 A
c) 2.220E-01 A
d) 2.441E-01 A
e) 2.686E-01 A
4)
Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 5.267E+00 V
b) 5.794E+00 V
c) 6.373E+00 V
d) 7.011E+00 V
e) 7.712E+00 V

#### c10 K1

1)
Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.779E+01 V
b) 1.957E+01 V
c) 2.153E+01 V
d) 2.368E+01 V
e) 2.605E+01 V
2)
In the circuit shown V=16.2 V, R1=2.84 Ω, R2=7.06 Ω, and R3=13.1 Ω. What is the power dissipated by R2?
a) 1.418E+01 W
b) 1.560E+01 W
c) 1.716E+01 W
d) 1.887E+01 W
e) 2.076E+01 W
3)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A
4)
Two sources of emf ε1=38.9 V, and ε2=14.4 V are oriented as shownin the circuit. The resistances are R1=4.33 kΩ and R2=1.65 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.59 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 9.142E+00 V
b) 1.006E+01 V
c) 1.106E+01 V
d) 1.217E+01 V
e) 1.338E+01 V

#### c10 K2

1)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
a) 1.203E-01 A
b) 1.324E-01 A
c) 1.456E-01 A
d) 1.602E-01 A
e) 1.762E-01 A
2)
In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
a) 7.123E+00 W
b) 7.835E+00 W
c) 8.618E+00 W
d) 9.480E+00 W
e) 1.043E+01 W
3)
Two sources of emf ε1=16.8 V, and ε2=6.85 V are oriented as shownin the circuit. The resistances are R1=4.43 kΩ and R2=1.24 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.68 mA and I4=0.758 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 3.890E+00 V
b) 4.279E+00 V
c) 4.707E+00 V
d) 5.178E+00 V
e) 5.695E+00 V
4)
Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.779E+01 V
b) 1.957E+01 V
c) 2.153E+01 V
d) 2.368E+01 V
e) 2.605E+01 V

### c10 L0

1)
The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
a) 8.147E-02 A
b) 8.962E-02 A
c) 9.858E-02 A
d) 1.084E-01 A
e) 1.193E-01 A
2)
In the circuit shown V=15.4 V, R1=2.55 Ω, R2=5.12 Ω, and R3=12.7 Ω. What is the power dissipated by R2?
a) 1.096E+01 W
b) 1.206E+01 W
c) 1.326E+01 W
d) 1.459E+01 W
e) 1.605E+01 W
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
a) 9.718E+00 s
b) 1.069E+01 s
c) 1.176E+01 s
d) 1.293E+01 s
e) 1.423E+01 s

4) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?

a) 1.552E+00 V
b) 1.707E+00 V
c) 1.878E+00 V
d) 2.066E+00 V
e) 2.272E+00 V

#### c10 L1

1)
The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
a) 2.089E-01 A
b) 2.298E-01 A
c) 2.528E-01 A
d) 2.781E-01 A
e) 3.059E-01 A

2) A battery with a terminal voltage of 8.41 V is connected to a circuit consisting of 3 16.1 Ω resistors and one 10.9 Ω resistor. What is the voltage drop across the 10.9 Ω resistor?

a) 1.058E+00 V
b) 1.163E+00 V
c) 1.280E+00 V
d) 1.408E+00 V
e) 1.548E+00 V
3)
In the circuit shown V=19.6 V, R1=1.45 Ω, R2=7.85 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
a) 2.730E+01 W
b) 3.003E+01 W
c) 3.304E+01 W
d) 3.634E+01 W
e) 3.998E+01 W
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
a) 2.177E+01 s
b) 2.394E+01 s
c) 2.634E+01 s
d) 2.897E+01 s
e) 3.187E+01 s

#### c10 L2

1)
The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
a) 1.401E-01 A
b) 1.542E-01 A
c) 1.696E-01 A
d) 1.865E-01 A
e) 2.052E-01 A
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 467 V. If the combined external and internal resistance is 172 &Omega and the capacitance is 74 mF, how long will it take for the capacitor's voltage to reach 258.0 V?
a) 7.688E+00 s
b) 8.457E+00 s
c) 9.303E+00 s
d) 1.023E+01 s
e) 1.126E+01 s

3) A battery with a terminal voltage of 8.14 V is connected to a circuit consisting of 2 21.5 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?

a) 1.298E+00 V
b) 1.428E+00 V
c) 1.571E+00 V
d) 1.728E+00 V
e) 1.901E+00 V
4)
In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
a) 7.123E+00 W
b) 7.835E+00 W
c) 8.618E+00 W
d) 9.480E+00 W
e) 1.043E+01 W

### c10 M0

1) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?

a) 1.552E+00 V
b) 1.707E+00 V
c) 1.878E+00 V
d) 2.066E+00 V
e) 2.272E+00 V
2)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
3)
In the circuit shown V=17.5 V, R1=2.34 Ω, R2=7.1 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
a) 1.784E+01 W
b) 1.963E+01 W
c) 2.159E+01 W
d) 2.375E+01 W
e) 2.612E+01 W
4)
Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 4.342E+00 V
b) 4.776E+00 V
c) 5.254E+00 V
d) 5.779E+00 V
e) 6.357E+00 V

#### c10 M1

1)
The resistances in the figure shown are R1= 2.54 Ω, R2= 1.15 Ω, and R2= 2.9 Ω. V1 and V3 are text 0.446 V and 3.39 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.285E-01 A
b) 1.414E-01 A
c) 1.555E-01 A
d) 1.711E-01 A
e) 1.882E-01 A

2) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?

a) 2.352E+00 V
b) 2.587E+00 V
c) 2.846E+00 V
d) 3.131E+00 V
e) 3.444E+00 V
3)
Two sources of emf ε1=40.9 V, and ε2=16.1 V are oriented as shownin the circuit. The resistances are R1=5.55 kΩ and R2=1.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.11 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.754E+00 V
b) 9.630E+00 V
c) 1.059E+01 V
d) 1.165E+01 V
e) 1.282E+01 V
4)
In the circuit shown V=11.9 V, R1=2.75 Ω, R2=7.19 Ω, and R3=14.6 Ω. What is the power dissipated by R2?
a) 7.982E+00 W
b) 8.780E+00 W
c) 9.658E+00 W
d) 1.062E+01 W
e) 1.169E+01 W

#### c10 M2

1) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?

a) 2.352E+00 V
b) 2.587E+00 V
c) 2.846E+00 V
d) 3.131E+00 V
e) 3.444E+00 V
2)
Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.334E+00 V
b) 9.167E+00 V
c) 1.008E+01 V
d) 1.109E+01 V
e) 1.220E+01 V
3)
The resistances in the figure shown are R1= 2.67 Ω, R2= 1.78 Ω, and R2= 3.63 Ω. V1 and V3 are text 0.448 V and 2.29 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.656 V. What is the absolute value of the current through R1?
a) 9.287E-02 A
b) 1.022E-01 A
c) 1.124E-01 A
d) 1.236E-01 A
e) 1.360E-01 A
4)
In the circuit shown V=18.8 V, R1=2.59 Ω, R2=5.47 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
a) 2.191E+01 W
b) 2.410E+01 W
c) 2.651E+01 W
d) 2.916E+01 W
e) 3.208E+01 W

### c10 N0

1)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
a) 1.203E-01 A
b) 1.324E-01 A
c) 1.456E-01 A
d) 1.602E-01 A
e) 1.762E-01 A

2) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.2 Ω resistor. What is the voltage drop across the 10.2 Ω resistor?

a) 2.074E+00 V
b) 2.282E+00 V
c) 2.510E+00 V
d) 2.761E+00 V
e) 3.037E+00 V
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
a) 1.385E+01 s
b) 1.524E+01 s
c) 1.676E+01 s
d) 1.844E+01 s
e) 2.028E+01 s
4)
Two sources of emf ε1=43.0 V, and ε2=13.8 V are oriented as shownin the circuit. The resistances are R1=3.97 kΩ and R2=1.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.25 mA and I4=1.82 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 3.661E+00 mA
b) 4.027E+00 mA
c) 4.430E+00 mA
d) 4.873E+00 mA
e) 5.360E+00 mA

#### c10 N1

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
a) 2.177E+01 s
b) 2.394E+01 s
c) 2.634E+01 s
d) 2.897E+01 s
e) 3.187E+01 s
2)
Two sources of emf ε1=43.7 V, and ε2=13.1 V are oriented as shownin the circuit. The resistances are R1=5.21 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.86 mA and I4=0.9 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.691E+00 mA
b) 2.960E+00 mA
c) 3.256E+00 mA
d) 3.582E+00 mA
e) 3.940E+00 mA

3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?

a) 1.709E+00 V
b) 1.880E+00 V
c) 2.068E+00 V
d) 2.275E+00 V
e) 2.503E+00 V
4)
The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
a) 2.089E-01 A
b) 2.298E-01 A
c) 2.528E-01 A
d) 2.781E-01 A
e) 3.059E-01 A

#### c10 N2

1) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?

a) 1.202E+00 V
b) 1.323E+00 V
c) 1.455E+00 V
d) 1.600E+00 V
e) 1.761E+00 V
2)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
a) 1.296E+01 s
b) 1.425E+01 s
c) 1.568E+01 s
d) 1.725E+01 s
e) 1.897E+01 s
4)
Two sources of emf ε1=36.3 V, and ε2=12.9 V are oriented as shownin the circuit. The resistances are R1=4.28 kΩ and R2=1.58 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.16 mA and I4=1.2 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.224E+00 mA
b) 2.446E+00 mA
c) 2.691E+00 mA
d) 2.960E+00 mA
e) 3.256E+00 mA

### c10 O0

1)
Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.825E+00 V
b) 9.708E+00 V
c) 1.068E+01 V
d) 1.175E+01 V
e) 1.292E+01 V

2) Three resistors, R1 = 1.74 Ω, and R2 = R2 = 3.92 Ω, are connected in parallel to a 8.5 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 2.836E+01 W
b) 3.120E+01 W
c) 3.432E+01 W
d) 3.775E+01 W
e) 4.152E+01 W
3)
Two sources of emf ε1=44.4 V, and ε2=16.8 V are oriented as shownin the circuit. The resistances are R1=4.58 kΩ and R2=1.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=8.43 mA and I4=1.46 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 6.970E+00 mA
b) 7.667E+00 mA
c) 8.434E+00 mA
d) 9.277E+00 mA
e) 1.020E+01 mA
4)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A

#### c10 O1

1)
Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.247E+00 mA
b) 2.472E+00 mA
c) 2.719E+00 mA
d) 2.991E+00 mA
e) 3.290E+00 mA
2)
Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.825E+00 V
b) 9.708E+00 V
c) 1.068E+01 V
d) 1.175E+01 V
e) 1.292E+01 V
3)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A

4) Three resistors, R1 = 0.855 Ω, and R2 = R2 = 1.91 Ω, are connected in parallel to a 6.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 5.682E+01 W
b) 6.250E+01 W
c) 6.875E+01 W
d) 7.563E+01 W
e) 8.319E+01 W

#### c10 O2

1) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 1.173E+02 W
b) 1.290E+02 W
c) 1.419E+02 W
d) 1.561E+02 W
e) 1.717E+02 W
2)
Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.150E+00 mA
b) 2.365E+00 mA
c) 2.602E+00 mA
d) 2.862E+00 mA
e) 3.148E+00 mA
3)
Two sources of emf ε1=17.3 V, and ε2=6.46 V are oriented as shownin the circuit. The resistances are R1=2.54 kΩ and R2=2.79 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.1 mA and I4=0.281 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 6.488E+00 V
b) 7.137E+00 V
c) 7.850E+00 V
d) 8.635E+00 V
e) 9.499E+00 V
4)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A

### c10 P0

1)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A

2) A given battery has a 15 V emf and an internal resistance of 0.162 Ω. If it is connected to a 0.561 Ω resistor what is the power dissipated by that load?

a) 1.814E+02 W
b) 1.996E+02 W
c) 2.195E+02 W
d) 2.415E+02 W
e) 2.656E+02 W
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 543 V. If the combined external and internal resistance is 201 &Omega and the capacitance is 82 mF, how long will it take for the capacitor's voltage to reach 281.0 V?
a) 9.024E+00 s
b) 9.927E+00 s
c) 1.092E+01 s
d) 1.201E+01 s
e) 1.321E+01 s
4)
Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.093E+01 V
b) 1.202E+01 V
c) 1.322E+01 V
d) 1.454E+01 V
e) 1.600E+01 V

#### c10 P1

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
a) 2.177E+01 s
b) 2.394E+01 s
c) 2.634E+01 s
d) 2.897E+01 s
e) 3.187E+01 s
2)
Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.921E+01 V
b) 2.114E+01 V
c) 2.325E+01 V
d) 2.557E+01 V
e) 2.813E+01 V

3) A given battery has a 12 V emf and an internal resistance of 0.0984 Ω. If it is connected to a 0.485 Ω resistor what is the power dissipated by that load?

a) 2.052E+02 W
b) 2.257E+02 W
c) 2.483E+02 W
d) 2.731E+02 W
e) 3.004E+02 W
4)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
a) 1.203E-01 A
b) 1.324E-01 A
c) 1.456E-01 A
d) 1.602E-01 A
e) 1.762E-01 A

#### c10 P2

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 466 V. If the combined external and internal resistance is 123 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 331.0 V?
a) 9.571E+00 s
b) 1.053E+01 s
c) 1.158E+01 s
d) 1.274E+01 s
e) 1.401E+01 s
2)
The resistances in the figure shown are R1= 1.33 Ω, R2= 1.72 Ω, and R2= 3.69 Ω. V1 and V3 are text 0.606 V and 3.31 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.608 V. What is the absolute value of the current through R1?
a) 1.137E-01 A
b) 1.251E-01 A
c) 1.376E-01 A
d) 1.514E-01 A
e) 1.665E-01 A

3) A given battery has a 13 V emf and an internal resistance of 0.106 Ω. If it is connected to a 0.752 Ω resistor what is the power dissipated by that load?

a) 1.569E+02 W
b) 1.726E+02 W
c) 1.899E+02 W
d) 2.089E+02 W
e) 2.298E+02 W
4)
Two sources of emf ε1=38.8 V, and ε2=14.9 V are oriented as shownin the circuit. The resistances are R1=5.83 kΩ and R2=1.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.57 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.013E+01 V
b) 1.115E+01 V
c) 1.226E+01 V
d) 1.349E+01 V
e) 1.484E+01 V

### c10 Q0

1) Three resistors, R1 = 1.2 Ω, and R2 = R2 = 2.75 Ω, are connected in parallel to a 6.42 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 2.581E+01 W
b) 2.839E+01 W
c) 3.122E+01 W
d) 3.435E+01 W
e) 3.778E+01 W
2)
Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.981E+01 V
b) 2.179E+01 V
c) 2.397E+01 V
d) 2.637E+01 V
e) 2.901E+01 V

3) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?

a) 2.467E+00 V
b) 2.714E+00 V
c) 2.985E+00 V
d) 3.283E+00 V
e) 3.612E+00 V
4)
Two sources of emf ε1=26.8 V, and ε2=10.1 V are oriented as shownin the circuit. The resistances are R1=2.2 kΩ and R2=2.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.29 mA and I4=0.464 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 3.436E+00 V
b) 3.779E+00 V
c) 4.157E+00 V
d) 4.573E+00 V
e) 5.030E+00 V

#### c10 Q1

1)
Two sources of emf ε1=28.6 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=3.73 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.27 mA and I4=0.774 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 6.641E+00 V
b) 7.305E+00 V
c) 8.035E+00 V
d) 8.839E+00 V
e) 9.723E+00 V

2) A battery with a terminal voltage of 14.6 V is connected to a circuit consisting of 2 21.7 Ω resistors and one 14.4 Ω resistor. What is the voltage drop across the 14.4 Ω resistor?

a) 3.637E+00 V
b) 4.001E+00 V
c) 4.401E+00 V
d) 4.841E+00 V
e) 5.325E+00 V
3)
Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.779E+01 V
b) 1.957E+01 V
c) 2.153E+01 V
d) 2.368E+01 V
e) 2.605E+01 V

4) Three resistors, R1 = 1.74 Ω, and R2 = R2 = 3.92 Ω, are connected in parallel to a 8.5 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 2.836E+01 W
b) 3.120E+01 W
c) 3.432E+01 W
d) 3.775E+01 W
e) 4.152E+01 W

#### c10 Q2

1) A battery with a terminal voltage of 12.4 V is connected to a circuit consisting of 3 21.6 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?

a) 1.333E+00 V
b) 1.466E+00 V
c) 1.612E+00 V
d) 1.774E+00 V
e) 1.951E+00 V
2)
Two sources of emf ε1=24.4 V, and ε2=6.73 V are oriented as shownin the circuit. The resistances are R1=5.7 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.36 mA and I4=0.418 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 5.418E+00 V
b) 5.960E+00 V
c) 6.556E+00 V
d) 7.212E+00 V
e) 7.933E+00 V

3) Three resistors, R1 = 1.31 Ω, and R2 = R2 = 2.91 Ω, are connected in parallel to a 6.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 2.294E+01 W
b) 2.523E+01 W
c) 2.776E+01 W
d) 3.053E+01 W
e) 3.359E+01 W
4)
Two sources of emf ε1=26.2 V, and ε2=8.29 V are oriented as shownin the circuit. The resistances are R1=3.43 kΩ and R2=1.16 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.09 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 6.720E+00 V
b) 7.392E+00 V
c) 8.131E+00 V
d) 8.944E+00 V
e) 9.838E+00 V

### c10 R0

1)
The resistances in the figure shown are R1= 1.18 Ω, R2= 0.878 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.637 V and 3.51 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.547 V. What is the absolute value of the current through R1?
a) 1.701E-01 A
b) 1.871E-01 A
c) 2.058E-01 A
d) 2.264E-01 A
e) 2.490E-01 A

2) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 1.173E+02 W
b) 1.290E+02 W
c) 1.419E+02 W
d) 1.561E+02 W
e) 1.717E+02 W
3)
Two sources of emf ε1=46.1 V, and ε2=16.2 V are oriented as shownin the circuit. The resistances are R1=5.17 kΩ and R2=2.06 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.97 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.309E+01 V
b) 1.440E+01 V
c) 1.584E+01 V
d) 1.742E+01 V
e) 1.917E+01 V

4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?

a) 1.229E+02 W
b) 1.352E+02 W
c) 1.487E+02 W
d) 1.636E+02 W
e) 1.799E+02 W

#### c10 R1

1)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
a) 1.203E-01 A
b) 1.324E-01 A
c) 1.456E-01 A
d) 1.602E-01 A
e) 1.762E-01 A

2) A given battery has a 13 V emf and an internal resistance of 0.161 Ω. If it is connected to a 0.814 Ω resistor what is the power dissipated by that load?

a) 1.087E+02 W
b) 1.196E+02 W
c) 1.316E+02 W
d) 1.447E+02 W
e) 1.592E+02 W

3) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 1.173E+02 W
b) 1.290E+02 W
c) 1.419E+02 W
d) 1.561E+02 W
e) 1.717E+02 W
4)
Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.981E+01 V
b) 2.179E+01 V
c) 2.397E+01 V
d) 2.637E+01 V
e) 2.901E+01 V

#### c10 R2

1)
Two sources of emf ε1=36.7 V, and ε2=12.1 V are oriented as shownin the circuit. The resistances are R1=2.52 kΩ and R2=1.22 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.14 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 7.805E+00 V
b) 8.586E+00 V
c) 9.444E+00 V
d) 1.039E+01 V
e) 1.143E+01 V

2) Three resistors, R1 = 1.82 Ω, and R2 = R2 = 4.14 Ω, are connected in parallel to a 5.65 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 1.754E+01 W
b) 1.929E+01 W
c) 2.122E+01 W
d) 2.335E+01 W
e) 2.568E+01 W
3)
The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
a) 1.401E-01 A
b) 1.542E-01 A
c) 1.696E-01 A
d) 1.865E-01 A
e) 2.052E-01 A

4) A given battery has a 12 V emf and an internal resistance of 0.0984 Ω. If it is connected to a 0.485 Ω resistor what is the power dissipated by that load?

a) 2.052E+02 W
b) 2.257E+02 W
c) 2.483E+02 W
d) 2.731E+02 W
e) 3.004E+02 W

### c10 S0

1)
Two sources of emf ε1=39.2 V, and ε2=12.6 V are oriented as shownin the circuit. The resistances are R1=3.86 kΩ and R2=1.89 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.05 mA and I4=0.701 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 8.687E+00 V
b) 9.555E+00 V
c) 1.051E+01 V
d) 1.156E+01 V
e) 1.272E+01 V

2) Three resistors, R1 = 1.2 Ω, and R2 = R2 = 2.75 Ω, are connected in parallel to a 6.42 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 2.581E+01 W
b) 2.839E+01 W
c) 3.122E+01 W
d) 3.435E+01 W
e) 3.778E+01 W
3)
Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.150E+00 mA
b) 2.365E+00 mA
c) 2.602E+00 mA
d) 2.862E+00 mA
e) 3.148E+00 mA

4) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?

a) 2.352E+00 V
b) 2.587E+00 V
c) 2.846E+00 V
d) 3.131E+00 V
e) 3.444E+00 V

#### c10 S1

1)
Two sources of emf ε1=36.3 V, and ε2=12.9 V are oriented as shownin the circuit. The resistances are R1=4.28 kΩ and R2=1.58 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.16 mA and I4=1.2 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.224E+00 mA
b) 2.446E+00 mA
c) 2.691E+00 mA
d) 2.960E+00 mA
e) 3.256E+00 mA

2) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?

a) 1.234E+00 V
b) 1.358E+00 V
c) 1.493E+00 V
d) 1.643E+00 V
e) 1.807E+00 V
3)
Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.108E+00 V
b) 4.519E+00 V
c) 4.970E+00 V
d) 5.468E+00 V
e) 6.014E+00 V

4) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 6.977E+01 W
b) 7.674E+01 W
c) 8.442E+01 W
d) 9.286E+01 W
e) 1.021E+02 W

#### c10 S2

1) A battery with a terminal voltage of 8.72 V is connected to a circuit consisting of 2 15.8 Ω resistors and one 9.58 Ω resistor. What is the voltage drop across the 9.58 Ω resistor?

a) 1.677E+00 V
b) 1.844E+00 V
c) 2.029E+00 V
d) 2.231E+00 V
e) 2.455E+00 V
2)
Two sources of emf ε1=24.8 V, and ε2=10.3 V are oriented as shownin the circuit. The resistances are R1=2.19 kΩ and R2=1.6 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.49 mA and I4=0.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.660E+00 mA
b) 1.826E+00 mA
c) 2.009E+00 mA
d) 2.209E+00 mA
e) 2.430E+00 mA
3)
Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.093E+01 V
b) 1.202E+01 V
c) 1.322E+01 V
d) 1.454E+01 V
e) 1.600E+01 V

4) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 5.184E+01 W
b) 5.702E+01 W
c) 6.272E+01 W
d) 6.900E+01 W
e) 7.590E+01 W

### c10 T0

1)
In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
a) 1.446E+01 W
b) 1.591E+01 W
c) 1.750E+01 W
d) 1.925E+01 W
e) 2.117E+01 W

2) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?

a) 1.552E+00 V
b) 1.707E+00 V
c) 1.878E+00 V
d) 2.066E+00 V
e) 2.272E+00 V
3)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A

4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?

a) 1.229E+02 W
b) 1.352E+02 W
c) 1.487E+02 W
d) 1.636E+02 W
e) 1.799E+02 W

#### c10 T1

1) A given battery has a 13 V emf and an internal resistance of 0.113 Ω. If it is connected to a 0.686 Ω resistor what is the power dissipated by that load?

a) 1.501E+02 W
b) 1.651E+02 W
c) 1.816E+02 W
d) 1.998E+02 W
e) 2.197E+02 W
2)
In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
a) 1.713E+01 W
b) 1.885E+01 W
c) 2.073E+01 W
d) 2.280E+01 W
e) 2.508E+01 W
3)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A

4) A battery with a terminal voltage of 13.2 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.3 Ω resistor. What is the voltage drop across the 10.3 Ω resistor?

a) 1.958E+00 V
b) 2.153E+00 V
c) 2.369E+00 V
d) 2.606E+00 V
e) 2.866E+00 V

#### c10 T2

1)
In the circuit shown V=19.6 V, R1=1.45 Ω, R2=7.85 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
a) 2.730E+01 W
b) 3.003E+01 W
c) 3.304E+01 W
d) 3.634E+01 W
e) 3.998E+01 W
2)
The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
a) 1.427E-01 A
b) 1.569E-01 A
c) 1.726E-01 A
d) 1.899E-01 A
e) 2.089E-01 A

3) A battery with a terminal voltage of 14.6 V is connected to a circuit consisting of 2 21.7 Ω resistors and one 14.4 Ω resistor. What is the voltage drop across the 14.4 Ω resistor?

a) 3.637E+00 V
b) 4.001E+00 V
c) 4.401E+00 V
d) 4.841E+00 V
e) 5.325E+00 V

4) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?

a) 1.419E+02 W
b) 1.561E+02 W
c) 1.717E+02 W
d) 1.889E+02 W
e) 2.078E+02 W

### c10 U0

1)
Two sources of emf ε1=14.3 V, and ε2=5.6 V are oriented as shownin the circuit. The resistances are R1=5.31 kΩ and R2=2.39 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.12 mA and I4=0.284 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 3.416E+00 V
b) 3.757E+00 V
c) 4.133E+00 V
d) 4.546E+00 V
e) 5.001E+00 V
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
a) 5.401E+00 s
b) 5.941E+00 s
c) 6.535E+00 s
d) 7.189E+00 s
e) 7.908E+00 s
3)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A

4) Three resistors, R1 = 0.61 Ω, and R2 = R2 = 1.35 Ω, are connected in parallel to a 7.04 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 7.386E+01 W
b) 8.125E+01 W
c) 8.937E+01 W
d) 9.831E+01 W
e) 1.081E+02 W

#### c10 U1

1) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 4.890E+01 W
b) 5.379E+01 W
c) 5.917E+01 W
d) 6.508E+01 W
e) 7.159E+01 W
2)
Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 4.342E+00 V
b) 4.776E+00 V
c) 5.254E+00 V
d) 5.779E+00 V
e) 6.357E+00 V
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
a) 1.905E+01 s
b) 2.095E+01 s
c) 2.304E+01 s
d) 2.535E+01 s
e) 2.788E+01 s
4)
The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
a) 1.427E-01 A
b) 1.569E-01 A
c) 1.726E-01 A
d) 1.899E-01 A
e) 2.089E-01 A

#### c10 U2

1)
Two sources of emf ε1=21.6 V, and ε2=8.59 V are oriented as shownin the circuit. The resistances are R1=4.97 kΩ and R2=1.69 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.2 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 6.064E+00 V
b) 6.670E+00 V
c) 7.337E+00 V
d) 8.071E+00 V
e) 8.878E+00 V
2)
The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
a) 2.089E-01 A
b) 2.298E-01 A
c) 2.528E-01 A
d) 2.781E-01 A
e) 3.059E-01 A
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 554 V. If the combined external and internal resistance is 228 &Omega and the capacitance is 93 mF, how long will it take for the capacitor's voltage to reach 450.0 V?
a) 3.224E+01 s
b) 3.547E+01 s
c) 3.902E+01 s
d) 4.292E+01 s
e) 4.721E+01 s

4) Three resistors, R1 = 0.624 Ω, and R2 = R2 = 1.37 Ω, are connected in parallel to a 7.46 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 7.371E+01 W
b) 8.108E+01 W
c) 8.919E+01 W
d) 9.810E+01 W
e) 1.079E+02 W

### c10 V0

1) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?

a) 1.419E+02 W
b) 1.561E+02 W
c) 1.717E+02 W
d) 1.889E+02 W
e) 2.078E+02 W
2)
In the circuit shown V=15.4 V, R1=2.77 Ω, R2=6.07 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
a) 1.190E+01 W
b) 1.309E+01 W
c) 1.440E+01 W
d) 1.584E+01 W
e) 1.742E+01 W
3)
The resistances in the figure shown are R1= 1.54 Ω, R2= 0.927 Ω, and R2= 2.46 Ω. V1 and V3 are text 0.632 V and 2.12 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.586 V. What is the absolute value of the current through R1?
a) 1.770E-01 A
b) 1.947E-01 A
c) 2.141E-01 A
d) 2.355E-01 A
e) 2.591E-01 A
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
a) 1.296E+01 s
b) 1.425E+01 s
c) 1.568E+01 s
d) 1.725E+01 s
e) 1.897E+01 s

#### c10 V1

1) A given battery has a 14 V emf and an internal resistance of 0.132 Ω. If it is connected to a 0.689 Ω resistor what is the power dissipated by that load?

a) 1.656E+02 W
b) 1.821E+02 W
c) 2.003E+02 W
d) 2.204E+02 W
e) 2.424E+02 W
2)
The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
a) 2.089E-01 A
b) 2.298E-01 A
c) 2.528E-01 A
d) 2.781E-01 A
e) 3.059E-01 A
3)
In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
a) 1.446E+01 W
b) 1.591E+01 W
c) 1.750E+01 W
d) 1.925E+01 W
e) 2.117E+01 W
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 351 V. If the combined external and internal resistance is 148 &Omega and the capacitance is 60 mF, how long will it take for the capacitor's voltage to reach 227.0 V?
a) 9.240E+00 s
b) 1.016E+01 s
c) 1.118E+01 s
d) 1.230E+01 s
e) 1.353E+01 s

#### c10 V2

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 543 V. If the combined external and internal resistance is 201 &Omega and the capacitance is 82 mF, how long will it take for the capacitor's voltage to reach 281.0 V?
a) 9.024E+00 s
b) 9.927E+00 s
c) 1.092E+01 s
d) 1.201E+01 s
e) 1.321E+01 s
2)
In the circuit shown V=10.8 V, R1=1.26 Ω, R2=5.65 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
a) 8.240E+00 W
b) 9.064E+00 W
c) 9.970E+00 W
d) 1.097E+01 W
e) 1.206E+01 W

3) A given battery has a 13 V emf and an internal resistance of 0.159 Ω. If it is connected to a 0.617 Ω resistor what is the power dissipated by that load?

a) 1.301E+02 W
b) 1.431E+02 W
c) 1.574E+02 W
d) 1.732E+02 W
e) 1.905E+02 W
4)
The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
a) 1.834E-01 A
b) 2.018E-01 A
c) 2.220E-01 A
d) 2.441E-01 A
e) 2.686E-01 A

### c10 W0

1) Three resistors, R1 = 1.52 Ω, and R2 = R2 = 3.38 Ω, are connected in parallel to a 5.82 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 1.842E+01 W
b) 2.026E+01 W
c) 2.228E+01 W
d) 2.451E+01 W
e) 2.696E+01 W

2) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?

a) 2.843E+00 V
b) 3.127E+00 V
c) 3.440E+00 V
d) 3.784E+00 V
e) 4.162E+00 V
3)
Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.299E+00 mA
b) 1.429E+00 mA
c) 1.572E+00 mA
d) 1.729E+00 mA
e) 1.902E+00 mA
4)
The resistances in the figure shown are R1= 2.74 Ω, R2= 1.63 Ω, and R2= 2.75 Ω. V1 and V3 are text 0.485 V and 2.01 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.555 V. What is the absolute value of the current through R1?
a) 1.114E-01 A
b) 1.225E-01 A
c) 1.348E-01 A
d) 1.483E-01 A
e) 1.631E-01 A

#### c10 W1

1) A battery with a terminal voltage of 10.7 V is connected to a circuit consisting of 2 24.5 Ω resistors and one 15.2 Ω resistor. What is the voltage drop across the 15.2 Ω resistor?

a) 1.730E+00 V
b) 1.903E+00 V
c) 2.094E+00 V
d) 2.303E+00 V
e) 2.533E+00 V
2)
The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
a) 1.427E-01 A
b) 1.569E-01 A
c) 1.726E-01 A
d) 1.899E-01 A
e) 2.089E-01 A

3) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 4.890E+01 W
b) 5.379E+01 W
c) 5.917E+01 W
d) 6.508E+01 W
e) 7.159E+01 W
4)
Two sources of emf ε1=24.9 V, and ε2=10.1 V are oriented as shownin the circuit. The resistances are R1=2.32 kΩ and R2=2.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.74 mA and I4=0.444 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.725E+00 mA
b) 1.898E+00 mA
c) 2.087E+00 mA
d) 2.296E+00 mA
e) 2.526E+00 mA

#### c10 W2

1) Three resistors, R1 = 0.672 Ω, and R2 = R2 = 1.52 Ω, are connected in parallel to a 5.34 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 2.898E+01 W
b) 3.188E+01 W
c) 3.507E+01 W
d) 3.858E+01 W
e) 4.243E+01 W
2)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A
3)
Two sources of emf ε1=29.3 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=5.65 kΩ and R2=2.68 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.81 mA and I4=0.525 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.717E+00 mA
b) 1.888E+00 mA
c) 2.077E+00 mA
d) 2.285E+00 mA
e) 2.514E+00 mA

4) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?

a) 2.843E+00 V
b) 3.127E+00 V
c) 3.440E+00 V
d) 3.784E+00 V
e) 4.162E+00 V

### c10 X0

1)
The resistances in the figure shown are R1= 2.34 Ω, R2= 1.34 Ω, and R2= 2.94 Ω. V1 and V3 are text 0.609 V and 1.68 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.541 V. What is the absolute value of the current through R1?
a) 1.464E-01 A
b) 1.610E-01 A
c) 1.772E-01 A
d) 1.949E-01 A
e) 2.144E-01 A
2)
Two sources of emf ε1=44.4 V, and ε2=16.8 V are oriented as shownin the circuit. The resistances are R1=4.58 kΩ and R2=1.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=8.43 mA and I4=1.46 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 6.970E+00 mA
b) 7.667E+00 mA
c) 8.434E+00 mA
d) 9.277E+00 mA
e) 1.020E+01 mA

3) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 1.173E+02 W
b) 1.290E+02 W
c) 1.419E+02 W
d) 1.561E+02 W
e) 1.717E+02 W
4)
Two sources of emf ε1=38.9 V, and ε2=14.4 V are oriented as shownin the circuit. The resistances are R1=4.33 kΩ and R2=1.65 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.59 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 9.142E+00 V
b) 1.006E+01 V
c) 1.106E+01 V
d) 1.217E+01 V
e) 1.338E+01 V

#### c10 X1

1) Three resistors, R1 = 1.82 Ω, and R2 = R2 = 4.14 Ω, are connected in parallel to a 5.65 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 1.754E+01 W
b) 1.929E+01 W
c) 2.122E+01 W
d) 2.335E+01 W
e) 2.568E+01 W
2)
Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.247E+00 mA
b) 2.472E+00 mA
c) 2.719E+00 mA
d) 2.991E+00 mA
e) 3.290E+00 mA
3)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A
4)
Two sources of emf ε1=27.1 V, and ε2=8.04 V are oriented as shownin the circuit. The resistances are R1=2.94 kΩ and R2=1.61 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.87 mA and I4=0.57 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 8.482E+00 V
b) 9.330E+00 V
c) 1.026E+01 V
d) 1.129E+01 V
e) 1.242E+01 V

#### c10 X2

1)
Two sources of emf ε1=49.6 V, and ε2=19.3 V are oriented as shownin the circuit. The resistances are R1=4.87 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.37 mA and I4=1.01 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 3.055E+00 mA
b) 3.360E+00 mA
c) 3.696E+00 mA
d) 4.066E+00 mA
e) 4.472E+00 mA

2) Three resistors, R1 = 1.23 Ω, and R2 = R2 = 2.73 Ω, are connected in parallel to a 5.41 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

a) 1.788E+01 W
b) 1.967E+01 W
c) 2.163E+01 W
d) 2.380E+01 W
e) 2.617E+01 W
3)
Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.108E+00 V
b) 4.519E+00 V
c) 4.970E+00 V
d) 5.468E+00 V
e) 6.014E+00 V
4)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A

### c10 Y0

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 569 V. If the combined external and internal resistance is 137 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 419.0 V?
a) 1.043E+01 s
b) 1.147E+01 s
c) 1.262E+01 s
d) 1.388E+01 s
e) 1.527E+01 s
2)
In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
a) 7.123E+00 W
b) 7.835E+00 W
c) 8.618E+00 W
d) 9.480E+00 W
e) 1.043E+01 W

3) A battery with a terminal voltage of 8.01 V is connected to a circuit consisting of 3 22.1 Ω resistors and one 14.5 Ω resistor. What is the voltage drop across the 14.5 Ω resistor?

a) 9.818E-01 V
b) 1.080E+00 V
c) 1.188E+00 V
d) 1.307E+00 V
e) 1.437E+00 V
4)
Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.299E+00 mA
b) 1.429E+00 mA
c) 1.572E+00 mA
d) 1.729E+00 mA
e) 1.902E+00 mA

#### c10 Y1

1)
Two sources of emf ε1=38.9 V, and ε2=15.7 V are oriented as shownin the circuit. The resistances are R1=2.24 kΩ and R2=2.23 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.01 mA and I4=0.86 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.955E+00 mA
b) 2.150E+00 mA
c) 2.365E+00 mA
d) 2.601E+00 mA
e) 2.862E+00 mA
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
a) 9.718E+00 s
b) 1.069E+01 s
c) 1.176E+01 s
d) 1.293E+01 s
e) 1.423E+01 s
3)
In the circuit shown V=15.8 V, R1=1.86 Ω, R2=7.66 Ω, and R3=12.9 Ω. What is the power dissipated by R2?
a) 1.157E+01 W
b) 1.273E+01 W
c) 1.400E+01 W
d) 1.540E+01 W
e) 1.694E+01 W

4) A battery with a terminal voltage of 8.14 V is connected to a circuit consisting of 2 21.5 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?

a) 1.298E+00 V
b) 1.428E+00 V
c) 1.571E+00 V
d) 1.728E+00 V
e) 1.901E+00 V

#### c10 Y2

1) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.2 Ω resistor. What is the voltage drop across the 10.2 Ω resistor?

a) 2.074E+00 V
b) 2.282E+00 V
c) 2.510E+00 V
d) 2.761E+00 V
e) 3.037E+00 V
2)
Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.150E+00 mA
b) 2.365E+00 mA
c) 2.602E+00 mA
d) 2.862E+00 mA
e) 3.148E+00 mA
3)
In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
a) 1.713E+01 W
b) 1.885E+01 W
c) 2.073E+01 W
d) 2.280E+01 W
e) 2.508E+01 W
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
a) 1.905E+01 s
b) 2.095E+01 s
c) 2.304E+01 s
d) 2.535E+01 s
e) 2.788E+01 s

### c10 Z0

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
a) 9.718E+00 s
b) 1.069E+01 s
c) 1.176E+01 s
d) 1.293E+01 s
e) 1.423E+01 s
2)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
3)
Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.093E+01 V
b) 1.202E+01 V
c) 1.322E+01 V
d) 1.454E+01 V
e) 1.600E+01 V
4)
Two sources of emf ε1=36.7 V, and ε2=12.1 V are oriented as shownin the circuit. The resistances are R1=2.52 kΩ and R2=1.22 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.14 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 7.805E+00 V
b) 8.586E+00 V
c) 9.444E+00 V
d) 1.039E+01 V
e) 1.143E+01 V

#### c10 Z1

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 466 V. If the combined external and internal resistance is 123 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 331.0 V?
a) 9.571E+00 s
b) 1.053E+01 s
c) 1.158E+01 s
d) 1.274E+01 s
e) 1.401E+01 s
2)
The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
a) 1.427E-01 A
b) 1.569E-01 A
c) 1.726E-01 A
d) 1.899E-01 A
e) 2.089E-01 A
3)
Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.921E+01 V
b) 2.114E+01 V
c) 2.325E+01 V
d) 2.557E+01 V
e) 2.813E+01 V
4)
Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 4.342E+00 V
b) 4.776E+00 V
c) 5.254E+00 V
d) 5.779E+00 V
e) 6.357E+00 V

#### c10 Z2

1)
Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.779E+01 V
b) 1.957E+01 V
c) 2.153E+01 V
d) 2.368E+01 V
e) 2.605E+01 V
2)
Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 5.267E+00 V
b) 5.794E+00 V
c) 6.373E+00 V
d) 7.011E+00 V
e) 7.712E+00 V
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
a) 1.385E+01 s
b) 1.524E+01 s
c) 1.676E+01 s
d) 1.844E+01 s
e) 2.028E+01 s
4)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
a) 1.203E-01 A
b) 1.324E-01 A
c) 1.456E-01 A
d) 1.602E-01 A
e) 1.762E-01 A

1. blank page
2. blank page
3. blank page
4. blank page
5. blank page
6. blank page
7. blank page
8. blank page
9. blank page
10. blank page
11. blank page
12. blank page
13. blank page
14. blank page
15. blank page
16. blank page
17. blank page
18. blank page
19. blank page
20. blank page

1. of 10 blank lines to separate exams from keys
2. of 10 blank lines to separate exams from keys
3. of 10 blank lines to separate exams from keys
4. of 10 blank lines to separate exams from keys
5. of 10 blank lines to separate exams from keys
6. of 10 blank lines to separate exams from keys
7. of 10 blank lines to separate exams from keys
8. of 10 blank lines to separate exams from keys
9. of 10 blank lines to separate exams from keys
10. of 10 blank lines to separate exams from keys

### Key: A0

1)
Two sources of emf ε1=40.9 V, and ε2=16.1 V are oriented as shownin the circuit. The resistances are R1=5.55 kΩ and R2=1.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.11 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.754E+00 V
-b) 9.630E+00 V
-c) 1.059E+01 V
-d) 1.165E+01 V
+e) 1.282E+01 V
2)
In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
+a) 1.713E+01 W
-b) 1.885E+01 W
-c) 2.073E+01 W
-d) 2.280E+01 W
-e) 2.508E+01 W
3)
The resistances in the figure shown are R1= 1.6 Ω, R2= 1.3 Ω, and R2= 2.22 Ω. V1 and V3 are text 0.55 V and 3.18 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.743 V. What is the absolute value of the current through R1?
+a) 1.721E-01 A
-b) 1.893E-01 A
-c) 2.082E-01 A
-d) 2.291E-01 A
-e) 2.520E-01 A
4)
Two sources of emf ε1=43.0 V, and ε2=13.8 V are oriented as shownin the circuit. The resistances are R1=3.97 kΩ and R2=1.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.25 mA and I4=1.82 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 3.661E+00 mA
-b) 4.027E+00 mA
+c) 4.430E+00 mA
-d) 4.873E+00 mA
-e) 5.360E+00 mA

Click these links for the keys:

#### Key: A1

1)
Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 1.299E+00 mA
-b) 1.429E+00 mA
-c) 1.572E+00 mA
-d) 1.729E+00 mA
-e) 1.902E+00 mA
2)
The resistances in the figure shown are R1= 1.33 Ω, R2= 1.72 Ω, and R2= 3.69 Ω. V1 and V3 are text 0.606 V and 3.31 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.608 V. What is the absolute value of the current through R1?
-a) 1.137E-01 A
-b) 1.251E-01 A
-c) 1.376E-01 A
+d) 1.514E-01 A
-e) 1.665E-01 A
3)
In the circuit shown V=16.2 V, R1=2.84 Ω, R2=7.06 Ω, and R3=13.1 Ω. What is the power dissipated by R2?
+a) 1.418E+01 W
-b) 1.560E+01 W
-c) 1.716E+01 W
-d) 1.887E+01 W
-e) 2.076E+01 W
4)
Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.380E+01 V
-b) 1.518E+01 V
-c) 1.670E+01 V
-d) 1.837E+01 V
-e) 2.020E+01 V

Click these links for the keys:

#### Key: A2

1)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
2)
Two sources of emf ε1=40.7 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=3.5 kΩ and R2=1.94 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.42 mA and I4=0.932 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.440E+01 V
-b) 1.584E+01 V
-c) 1.742E+01 V
-d) 1.916E+01 V
-e) 2.108E+01 V
3)
Two sources of emf ε1=24.8 V, and ε2=10.3 V are oriented as shownin the circuit. The resistances are R1=2.19 kΩ and R2=1.6 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.49 mA and I4=0.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 1.660E+00 mA
-b) 1.826E+00 mA
-c) 2.009E+00 mA
-d) 2.209E+00 mA
-e) 2.430E+00 mA
4)
In the circuit shown V=15.4 V, R1=2.77 Ω, R2=6.07 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
-a) 1.190E+01 W
-b) 1.309E+01 W
+c) 1.440E+01 W
-d) 1.584E+01 W
-e) 1.742E+01 W

Click these links for the keys:

### Key: B0

1)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A
2)
In the circuit shown V=18.4 V, R1=1.64 Ω, R2=6.56 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
-a) 2.470E+01 W
+b) 2.717E+01 W
-c) 2.989E+01 W
-d) 3.288E+01 W
-e) 3.617E+01 W
3)
Two sources of emf ε1=46.1 V, and ε2=16.2 V are oriented as shownin the circuit. The resistances are R1=5.17 kΩ and R2=2.06 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.97 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.309E+01 V
-b) 1.440E+01 V
+c) 1.584E+01 V
-d) 1.742E+01 V
-e) 1.917E+01 V

4) A given battery has a 12 V emf and an internal resistance of 0.107 Ω. If it is connected to a 0.814 Ω resistor what is the power dissipated by that load?

+a) 1.382E+02 W
-b) 1.520E+02 W
-c) 1.672E+02 W
-d) 1.839E+02 W
-e) 2.023E+02 W

Click these links for the keys:

#### Key: B1

1)
The resistances in the figure shown are R1= 1.6 Ω, R2= 1.3 Ω, and R2= 2.22 Ω. V1 and V3 are text 0.55 V and 3.18 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.743 V. What is the absolute value of the current through R1?
+a) 1.721E-01 A
-b) 1.893E-01 A
-c) 2.082E-01 A
-d) 2.291E-01 A
-e) 2.520E-01 A

2) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?

-a) 1.419E+02 W
-b) 1.561E+02 W
-c) 1.717E+02 W
+d) 1.889E+02 W
-e) 2.078E+02 W
3)
Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.334E+00 V
-b) 9.167E+00 V
+c) 1.008E+01 V
-d) 1.109E+01 V
-e) 1.220E+01 V
4)
In the circuit shown V=15.8 V, R1=1.86 Ω, R2=7.66 Ω, and R3=12.9 Ω. What is the power dissipated by R2?
-a) 1.157E+01 W
-b) 1.273E+01 W
-c) 1.400E+01 W
-d) 1.540E+01 W
+e) 1.694E+01 W

Click these links for the keys:

#### Key: B2

1)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A
2)
In the circuit shown V=10.9 V, R1=1.68 Ω, R2=7.52 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
-a) 7.827E+00 W
+b) 8.610E+00 W
-c) 9.470E+00 W
-d) 1.042E+01 W
-e) 1.146E+01 W

3) A given battery has a 15 V emf and an internal resistance of 0.113 Ω. If it is connected to a 0.645 Ω resistor what is the power dissipated by that load?

-a) 1.898E+02 W
-b) 2.087E+02 W
-c) 2.296E+02 W
+d) 2.526E+02 W
-e) 2.778E+02 W
4)
Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.334E+00 V
-b) 9.167E+00 V
+c) 1.008E+01 V
-d) 1.109E+01 V
-e) 1.220E+01 V

Click these links for the keys:

### Key: C0

1) Three resistors, R1 = 0.672 Ω, and R2 = R2 = 1.52 Ω, are connected in parallel to a 5.34 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 2.898E+01 W
-b) 3.188E+01 W
-c) 3.507E+01 W
-d) 3.858E+01 W
+e) 4.243E+01 W
2)
Two sources of emf ε1=49.8 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=2.78 kΩ and R2=2.63 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.51 mA and I4=0.969 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 7.886E+00 V
-b) 8.675E+00 V
-c) 9.542E+00 V
-d) 1.050E+01 V
+e) 1.155E+01 V

3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?

+a) 1.234E+00 V
-b) 1.358E+00 V
-c) 1.493E+00 V
-d) 1.643E+00 V
-e) 1.807E+00 V
4)
Two sources of emf ε1=13.6 V, and ε2=6.53 V are oriented as shownin the circuit. The resistances are R1=2.89 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.11 mA and I4=0.311 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 7.264E-01 mA
+b) 7.990E-01 mA
-c) 8.789E-01 mA
-d) 9.668E-01 mA
-e) 1.063E+00 mA

Click these links for the keys:

#### Key: C1

1)
Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 2.247E+00 mA
-b) 2.472E+00 mA
-c) 2.719E+00 mA
-d) 2.991E+00 mA
-e) 3.290E+00 mA

2) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 5.184E+01 W
+b) 5.702E+01 W
-c) 6.272E+01 W
-d) 6.900E+01 W
-e) 7.590E+01 W
3)
Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.093E+01 V
+b) 1.202E+01 V
-c) 1.322E+01 V
-d) 1.454E+01 V
-e) 1.600E+01 V

4) A battery with a terminal voltage of 8.72 V is connected to a circuit consisting of 2 15.8 Ω resistors and one 9.58 Ω resistor. What is the voltage drop across the 9.58 Ω resistor?

-a) 1.677E+00 V
-b) 1.844E+00 V
+c) 2.029E+00 V
-d) 2.231E+00 V
-e) 2.455E+00 V

Click these links for the keys:

#### Key: C2

1)
Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 2.247E+00 mA
-b) 2.472E+00 mA
-c) 2.719E+00 mA
-d) 2.991E+00 mA
-e) 3.290E+00 mA
2)
Two sources of emf ε1=49.8 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=2.78 kΩ and R2=2.63 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.51 mA and I4=0.969 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 7.886E+00 V
-b) 8.675E+00 V
-c) 9.542E+00 V
-d) 1.050E+01 V
+e) 1.155E+01 V

3) Three resistors, R1 = 0.548 Ω, and R2 = R2 = 1.24 Ω, are connected in parallel to a 7.16 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 7.029E+01 W
-b) 7.731E+01 W
-c) 8.505E+01 W
+d) 9.355E+01 W
-e) 1.029E+02 W

4) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?

-a) 1.370E+00 V
-b) 1.507E+00 V
-c) 1.658E+00 V
+d) 1.824E+00 V
-e) 2.006E+00 V

Click these links for the keys:

### Key: D0

1)
The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
+a) 1.401E-01 A
-b) 1.542E-01 A
-c) 1.696E-01 A
-d) 1.865E-01 A
-e) 2.052E-01 A

2) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?

+a) 2.467E+00 V
-b) 2.714E+00 V
-c) 2.985E+00 V
-d) 3.283E+00 V
-e) 3.612E+00 V
3)
Two sources of emf ε1=16.8 V, and ε2=6.85 V are oriented as shownin the circuit. The resistances are R1=4.43 kΩ and R2=1.24 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.68 mA and I4=0.758 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 3.890E+00 V
-b) 4.279E+00 V
-c) 4.707E+00 V
+d) 5.178E+00 V
-e) 5.695E+00 V

4) A given battery has a 15 V emf and an internal resistance of 0.177 Ω. If it is connected to a 0.824 Ω resistor what is the power dissipated by that load?

-a) 1.682E+02 W
+b) 1.850E+02 W
-c) 2.035E+02 W
-d) 2.239E+02 W
-e) 2.463E+02 W

Click these links for the keys:

#### Key: D1

1)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
2)
Two sources of emf ε1=26.2 V, and ε2=11.5 V are oriented as shownin the circuit. The resistances are R1=2.13 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.11 mA and I4=0.746 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.275E+00 V
-b) 4.703E+00 V
+c) 5.173E+00 V
-d) 5.691E+00 V
-e) 6.260E+00 V

3) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?

-a) 1.455E+02 W
-b) 1.601E+02 W
-c) 1.761E+02 W
+d) 1.937E+02 W
-e) 2.131E+02 W

4) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?

-a) 2.352E+00 V
-b) 2.587E+00 V
-c) 2.846E+00 V
-d) 3.131E+00 V
+e) 3.444E+00 V

Click these links for the keys:

#### Key: D2

1) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?

+a) 2.467E+00 V
-b) 2.714E+00 V
-c) 2.985E+00 V
-d) 3.283E+00 V
-e) 3.612E+00 V
2)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A
3)
Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.108E+00 V
+b) 4.519E+00 V
-c) 4.970E+00 V
-d) 5.468E+00 V
-e) 6.014E+00 V

4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?

-a) 1.229E+02 W
-b) 1.352E+02 W
-c) 1.487E+02 W
+d) 1.636E+02 W
-e) 1.799E+02 W

Click these links for the keys:

### Key: E0

1)
In the circuit shown V=18.4 V, R1=1.64 Ω, R2=6.56 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
-a) 2.470E+01 W
+b) 2.717E+01 W
-c) 2.989E+01 W
-d) 3.288E+01 W
-e) 3.617E+01 W
2)
Two sources of emf ε1=42.2 V, and ε2=17.8 V are oriented as shownin the circuit. The resistances are R1=4.2 kΩ and R2=2.83 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.5 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.056E+01 V
-b) 1.161E+01 V
-c) 1.277E+01 V
+d) 1.405E+01 V
-e) 1.545E+01 V

3) A given battery has a 14 V emf and an internal resistance of 0.132 Ω. If it is connected to a 0.689 Ω resistor what is the power dissipated by that load?

-a) 1.656E+02 W
-b) 1.821E+02 W
+c) 2.003E+02 W
-d) 2.204E+02 W
-e) 2.424E+02 W
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
-a) 5.401E+00 s
-b) 5.941E+00 s
-c) 6.535E+00 s
-d) 7.189E+00 s
+e) 7.908E+00 s

Click these links for the keys:

#### Key: E1

1) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?

-a) 1.455E+02 W
-b) 1.601E+02 W
-c) 1.761E+02 W
+d) 1.937E+02 W
-e) 2.131E+02 W
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
-a) 1.385E+01 s
+b) 1.524E+01 s
-c) 1.676E+01 s
-d) 1.844E+01 s
-e) 2.028E+01 s
3)
In the circuit shown V=16.1 V, R1=1.18 Ω, R2=5.28 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
-a) 2.172E+01 W
-b) 2.389E+01 W
-c) 2.628E+01 W
+d) 2.891E+01 W
-e) 3.180E+01 W
4)
Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.380E+01 V
-b) 1.518E+01 V
-c) 1.670E+01 V
-d) 1.837E+01 V
-e) 2.020E+01 V

Click these links for the keys:

#### Key: E2

1) A given battery has a 15 V emf and an internal resistance of 0.162 Ω. If it is connected to a 0.561 Ω resistor what is the power dissipated by that load?

-a) 1.814E+02 W
-b) 1.996E+02 W
-c) 2.195E+02 W
+d) 2.415E+02 W
-e) 2.656E+02 W
2)
Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.380E+01 V
-b) 1.518E+01 V
-c) 1.670E+01 V
-d) 1.837E+01 V
-e) 2.020E+01 V
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 598 V. If the combined external and internal resistance is 170 &Omega and the capacitance is 73 mF, how long will it take for the capacitor's voltage to reach 436.0 V?
-a) 1.218E+01 s
-b) 1.339E+01 s
-c) 1.473E+01 s
+d) 1.621E+01 s
-e) 1.783E+01 s
4)
In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
-a) 1.446E+01 W
-b) 1.591E+01 W
-c) 1.750E+01 W
-d) 1.925E+01 W
+e) 2.117E+01 W

Click these links for the keys:

### Key: F0

1)
Two sources of emf ε1=38.9 V, and ε2=15.7 V are oriented as shownin the circuit. The resistances are R1=2.24 kΩ and R2=2.23 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.01 mA and I4=0.86 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 1.955E+00 mA
+b) 2.150E+00 mA
-c) 2.365E+00 mA
-d) 2.601E+00 mA
-e) 2.862E+00 mA
2)
In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
-a) 7.123E+00 W
-b) 7.835E+00 W
-c) 8.618E+00 W
-d) 9.480E+00 W
+e) 1.043E+01 W
3)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A

4) A battery with a terminal voltage of 13.2 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.3 Ω resistor. What is the voltage drop across the 10.3 Ω resistor?

-a) 1.958E+00 V
-b) 2.153E+00 V
+c) 2.369E+00 V
-d) 2.606E+00 V
-e) 2.866E+00 V

Click these links for the keys:

#### Key: F1

1)
The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
+a) 1.401E-01 A
-b) 1.542E-01 A
-c) 1.696E-01 A
-d) 1.865E-01 A
-e) 2.052E-01 A
2)
Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.150E+00 mA
-b) 2.365E+00 mA
+c) 2.602E+00 mA
-d) 2.862E+00 mA
-e) 3.148E+00 mA

3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?

+a) 1.234E+00 V
-b) 1.358E+00 V
-c) 1.493E+00 V
-d) 1.643E+00 V
-e) 1.807E+00 V
4)
In the circuit shown V=16.1 V, R1=1.18 Ω, R2=5.28 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
-a) 2.172E+01 W
-b) 2.389E+01 W
-c) 2.628E+01 W
+d) 2.891E+01 W
-e) 3.180E+01 W

Click these links for the keys:

#### Key: F2

1)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
2)
Two sources of emf ε1=49.6 V, and ε2=19.3 V are oriented as shownin the circuit. The resistances are R1=4.87 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.37 mA and I4=1.01 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 3.055E+00 mA
+b) 3.360E+00 mA
-c) 3.696E+00 mA
-d) 4.066E+00 mA
-e) 4.472E+00 mA

3) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?

-a) 1.202E+00 V
+b) 1.323E+00 V
-c) 1.455E+00 V
-d) 1.600E+00 V
-e) 1.761E+00 V
4)
In the circuit shown V=17.9 V, R1=1.68 Ω, R2=7.84 Ω, and R3=12.3 Ω. What is the power dissipated by R2?
+a) 2.240E+01 W
-b) 2.464E+01 W
-c) 2.710E+01 W
-d) 2.981E+01 W
-e) 3.279E+01 W

Click these links for the keys:

### Key: G0

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 130 V. If the combined external and internal resistance is 109 &Omega and the capacitance is 59 mF, how long will it take for the capacitor's voltage to reach 69.9 V?
-a) 3.728E+00 s
-b) 4.101E+00 s
-c) 4.511E+00 s
+d) 4.962E+00 s
-e) 5.458E+00 s
2)
Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.921E+01 V
+b) 2.114E+01 V
-c) 2.325E+01 V
-d) 2.557E+01 V
-e) 2.813E+01 V
3)
The resistances in the figure shown are R1= 2.49 Ω, R2= 1.72 Ω, and R2= 3.58 Ω. V1 and V3 are text 0.417 V and 1.83 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.53 V. What is the absolute value of the current through R1?
-a) 8.220E-02 A
-b) 9.042E-02 A
-c) 9.946E-02 A
+d) 1.094E-01 A
-e) 1.203E-01 A

4) A given battery has a 10 V emf and an internal resistance of 0.119 Ω. If it is connected to a 0.445 Ω resistor what is the power dissipated by that load?

-a) 1.272E+02 W
+b) 1.399E+02 W
-c) 1.539E+02 W
-d) 1.693E+02 W
-e) 1.862E+02 W

Click these links for the keys:

#### Key: G1

1) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?

-a) 1.419E+02 W
-b) 1.561E+02 W
-c) 1.717E+02 W
+d) 1.889E+02 W
-e) 2.078E+02 W
2)
Two sources of emf ε1=30.6 V, and ε2=12.0 V are oriented as shownin the circuit. The resistances are R1=3.46 kΩ and R2=2.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.97 mA and I4=0.643 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.986E+00 V
-b) 5.484E+00 V
-c) 6.033E+00 V
-d) 6.636E+00 V
+e) 7.299E+00 V
3)
The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
-a) 8.147E-02 A
-b) 8.962E-02 A
-c) 9.858E-02 A
+d) 1.084E-01 A
-e) 1.193E-01 A
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
-a) 1.385E+01 s
+b) 1.524E+01 s
-c) 1.676E+01 s
-d) 1.844E+01 s
-e) 2.028E+01 s

Click these links for the keys:

#### Key: G2

1)
The resistances in the figure shown are R1= 1.54 Ω, R2= 0.927 Ω, and R2= 2.46 Ω. V1 and V3 are text 0.632 V and 2.12 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.586 V. What is the absolute value of the current through R1?
-a) 1.770E-01 A
-b) 1.947E-01 A
+c) 2.141E-01 A
-d) 2.355E-01 A
-e) 2.591E-01 A
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
+a) 1.905E+01 s
-b) 2.095E+01 s
-c) 2.304E+01 s
-d) 2.535E+01 s
-e) 2.788E+01 s
3)
Two sources of emf ε1=26.2 V, and ε2=11.5 V are oriented as shownin the circuit. The resistances are R1=2.13 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.11 mA and I4=0.746 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.275E+00 V
-b) 4.703E+00 V
+c) 5.173E+00 V
-d) 5.691E+00 V
-e) 6.260E+00 V

4) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?

-a) 1.455E+02 W
-b) 1.601E+02 W
-c) 1.761E+02 W
+d) 1.937E+02 W
-e) 2.131E+02 W

Click these links for the keys:

### Key: H0

1)
The resistances in the figure shown are R1= 2.34 Ω, R2= 1.34 Ω, and R2= 2.94 Ω. V1 and V3 are text 0.609 V and 1.68 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.541 V. What is the absolute value of the current through R1?
-a) 1.464E-01 A
+b) 1.610E-01 A
-c) 1.772E-01 A
-d) 1.949E-01 A
-e) 2.144E-01 A

2) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 2.293E+01 W
-b) 2.522E+01 W
+c) 2.774E+01 W
-d) 3.052E+01 W
-e) 3.357E+01 W
3)
Two sources of emf ε1=38.9 V, and ε2=16.9 V are oriented as shownin the circuit. The resistances are R1=3.3 kΩ and R2=2.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.34 mA and I4=0.955 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 7.031E+00 V
+b) 7.734E+00 V
-c) 8.507E+00 V
-d) 9.358E+00 V
-e) 1.029E+01 V

4) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?

-a) 1.709E+00 V
+b) 1.880E+00 V
-c) 2.068E+00 V
-d) 2.275E+00 V
-e) 2.503E+00 V

Click these links for the keys:

#### Key: H1

1)
The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
-a) 1.834E-01 A
+b) 2.018E-01 A
-c) 2.220E-01 A
-d) 2.441E-01 A
-e) 2.686E-01 A
2)
Two sources of emf ε1=38.8 V, and ε2=14.9 V are oriented as shownin the circuit. The resistances are R1=5.83 kΩ and R2=1.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.57 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.013E+01 V
-b) 1.115E+01 V
-c) 1.226E+01 V
+d) 1.349E+01 V
-e) 1.484E+01 V

3) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 2.293E+01 W
-b) 2.522E+01 W
+c) 2.774E+01 W
-d) 3.052E+01 W
-e) 3.357E+01 W

4) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?

-a) 1.370E+00 V
-b) 1.507E+00 V
-c) 1.658E+00 V
+d) 1.824E+00 V
-e) 2.006E+00 V

Click these links for the keys:

#### Key: H2

1)
Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.921E+01 V
+b) 2.114E+01 V
-c) 2.325E+01 V
-d) 2.557E+01 V
-e) 2.813E+01 V
2)
The resistances in the figure shown are R1= 2.67 Ω, R2= 1.78 Ω, and R2= 3.63 Ω. V1 and V3 are text 0.448 V and 2.29 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.656 V. What is the absolute value of the current through R1?
-a) 9.287E-02 A
-b) 1.022E-01 A
-c) 1.124E-01 A
+d) 1.236E-01 A
-e) 1.360E-01 A

3) Three resistors, R1 = 1.41 Ω, and R2 = R2 = 3.17 Ω, are connected in parallel to a 5.89 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 1.681E+01 W
-b) 1.849E+01 W
-c) 2.033E+01 W
-d) 2.237E+01 W
+e) 2.460E+01 W

4) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?

-a) 1.709E+00 V
+b) 1.880E+00 V
-c) 2.068E+00 V
-d) 2.275E+00 V
-e) 2.503E+00 V

Click these links for the keys:

### Key: I0

1)
Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.108E+00 V
+b) 4.519E+00 V
-c) 4.970E+00 V
-d) 5.468E+00 V
-e) 6.014E+00 V
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
-a) 9.718E+00 s
-b) 1.069E+01 s
+c) 1.176E+01 s
-d) 1.293E+01 s
-e) 1.423E+01 s

3) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?

+a) 2.467E+00 V
-b) 2.714E+00 V
-c) 2.985E+00 V
-d) 3.283E+00 V
-e) 3.612E+00 V
4)
Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.825E+00 V
-b) 9.708E+00 V
-c) 1.068E+01 V
-d) 1.175E+01 V
+e) 1.292E+01 V

Click these links for the keys:

#### Key: I1

1)
Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
+a) 5.267E+00 V
-b) 5.794E+00 V
-c) 6.373E+00 V
-d) 7.011E+00 V
-e) 7.712E+00 V

2) A battery with a terminal voltage of 12.4 V is connected to a circuit consisting of 3 21.6 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?

-a) 1.333E+00 V
-b) 1.466E+00 V
-c) 1.612E+00 V
-d) 1.774E+00 V
+e) 1.951E+00 V
3)
Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.981E+01 V
+b) 2.179E+01 V
-c) 2.397E+01 V
-d) 2.637E+01 V
-e) 2.901E+01 V
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
-a) 5.401E+00 s
-b) 5.941E+00 s
-c) 6.535E+00 s
-d) 7.189E+00 s
+e) 7.908E+00 s

Click these links for the keys:

#### Key: I2

1)
Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
+a) 5.267E+00 V
-b) 5.794E+00 V
-c) 6.373E+00 V
-d) 7.011E+00 V
-e) 7.712E+00 V

2) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?

+a) 2.467E+00 V
-b) 2.714E+00 V
-c) 2.985E+00 V
-d) 3.283E+00 V
-e) 3.612E+00 V
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
+a) 1.905E+01 s
-b) 2.095E+01 s
-c) 2.304E+01 s
-d) 2.535E+01 s
-e) 2.788E+01 s
4)
Two sources of emf ε1=42.2 V, and ε2=17.8 V are oriented as shownin the circuit. The resistances are R1=4.2 kΩ and R2=2.83 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.5 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.056E+01 V
-b) 1.161E+01 V
-c) 1.277E+01 V
+d) 1.405E+01 V
-e) 1.545E+01 V

Click these links for the keys:

### Key: J0

1)
The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
-a) 8.147E-02 A
-b) 8.962E-02 A
-c) 9.858E-02 A
+d) 1.084E-01 A
-e) 1.193E-01 A

2) Three resistors, R1 = 0.61 Ω, and R2 = R2 = 1.35 Ω, are connected in parallel to a 7.04 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 7.386E+01 W
+b) 8.125E+01 W
-c) 8.937E+01 W
-d) 9.831E+01 W
-e) 1.081E+02 W

3) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?

-a) 1.370E+00 V
-b) 1.507E+00 V
-c) 1.658E+00 V
+d) 1.824E+00 V
-e) 2.006E+00 V
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
+a) 1.905E+01 s
-b) 2.095E+01 s
-c) 2.304E+01 s
-d) 2.535E+01 s
-e) 2.788E+01 s

Click these links for the keys:

#### Key: J1

1) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 6.977E+01 W
-b) 7.674E+01 W
+c) 8.442E+01 W
-d) 9.286E+01 W
-e) 1.021E+02 W
2)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
-a) 1.203E-01 A
-b) 1.324E-01 A
+c) 1.456E-01 A
-d) 1.602E-01 A
-e) 1.762E-01 A

3) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?

-a) 2.843E+00 V
-b) 3.127E+00 V
+c) 3.440E+00 V
-d) 3.784E+00 V
-e) 4.162E+00 V
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
-a) 1.296E+01 s
-b) 1.425E+01 s
+c) 1.568E+01 s
-d) 1.725E+01 s
-e) 1.897E+01 s

Click these links for the keys:

#### Key: J2

1)
The resistances in the figure shown are R1= 1.18 Ω, R2= 0.878 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.637 V and 3.51 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.547 V. What is the absolute value of the current through R1?
-a) 1.701E-01 A
+b) 1.871E-01 A
-c) 2.058E-01 A
-d) 2.264E-01 A
-e) 2.490E-01 A

2) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 4.890E+01 W
-b) 5.379E+01 W
+c) 5.917E+01 W
-d) 6.508E+01 W
-e) 7.159E+01 W

3) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?

-a) 1.202E+00 V
+b) 1.323E+00 V
-c) 1.455E+00 V
-d) 1.600E+00 V
-e) 1.761E+00 V
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 130 V. If the combined external and internal resistance is 109 &Omega and the capacitance is 59 mF, how long will it take for the capacitor's voltage to reach 69.9 V?
-a) 3.728E+00 s
-b) 4.101E+00 s
-c) 4.511E+00 s
+d) 4.962E+00 s
-e) 5.458E+00 s

Click these links for the keys:

### Key: K0

1)
In the circuit shown V=10.9 V, R1=1.68 Ω, R2=7.52 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
-a) 7.827E+00 W
+b) 8.610E+00 W
-c) 9.470E+00 W
-d) 1.042E+01 W
-e) 1.146E+01 W
2)
Two sources of emf ε1=24.4 V, and ε2=6.73 V are oriented as shownin the circuit. The resistances are R1=5.7 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.36 mA and I4=0.418 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 5.418E+00 V
-b) 5.960E+00 V
-c) 6.556E+00 V
-d) 7.212E+00 V
+e) 7.933E+00 V
3)
The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
-a) 1.834E-01 A
+b) 2.018E-01 A
-c) 2.220E-01 A
-d) 2.441E-01 A
-e) 2.686E-01 A
4)
Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
+a) 5.267E+00 V
-b) 5.794E+00 V
-c) 6.373E+00 V
-d) 7.011E+00 V
-e) 7.712E+00 V

Click these links for the keys:

#### Key: K1

1)
Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.779E+01 V
-b) 1.957E+01 V
-c) 2.153E+01 V
-d) 2.368E+01 V
-e) 2.605E+01 V
2)
In the circuit shown V=16.2 V, R1=2.84 Ω, R2=7.06 Ω, and R3=13.1 Ω. What is the power dissipated by R2?
+a) 1.418E+01 W
-b) 1.560E+01 W
-c) 1.716E+01 W
-d) 1.887E+01 W
-e) 2.076E+01 W
3)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A
4)
Two sources of emf ε1=38.9 V, and ε2=14.4 V are oriented as shownin the circuit. The resistances are R1=4.33 kΩ and R2=1.65 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.59 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 9.142E+00 V
-b) 1.006E+01 V
+c) 1.106E+01 V
-d) 1.217E+01 V
-e) 1.338E+01 V

Click these links for the keys:

#### Key: K2

1)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
-a) 1.203E-01 A
-b) 1.324E-01 A
+c) 1.456E-01 A
-d) 1.602E-01 A
-e) 1.762E-01 A
2)
In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
-a) 7.123E+00 W
-b) 7.835E+00 W
-c) 8.618E+00 W
-d) 9.480E+00 W
+e) 1.043E+01 W
3)
Two sources of emf ε1=16.8 V, and ε2=6.85 V are oriented as shownin the circuit. The resistances are R1=4.43 kΩ and R2=1.24 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.68 mA and I4=0.758 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 3.890E+00 V
-b) 4.279E+00 V
-c) 4.707E+00 V
+d) 5.178E+00 V
-e) 5.695E+00 V
4)
Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.779E+01 V
-b) 1.957E+01 V
-c) 2.153E+01 V
-d) 2.368E+01 V
-e) 2.605E+01 V

Click these links for the keys:

### Key: L0

1)
The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
-a) 8.147E-02 A
-b) 8.962E-02 A
-c) 9.858E-02 A
+d) 1.084E-01 A
-e) 1.193E-01 A
2)
In the circuit shown V=15.4 V, R1=2.55 Ω, R2=5.12 Ω, and R3=12.7 Ω. What is the power dissipated by R2?
-a) 1.096E+01 W
-b) 1.206E+01 W
-c) 1.326E+01 W
-d) 1.459E+01 W
+e) 1.605E+01 W
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
-a) 9.718E+00 s
-b) 1.069E+01 s
+c) 1.176E+01 s
-d) 1.293E+01 s
-e) 1.423E+01 s

4) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?

-a) 1.552E+00 V
-b) 1.707E+00 V
+c) 1.878E+00 V
-d) 2.066E+00 V
-e) 2.272E+00 V

Click these links for the keys:

#### Key: L1

1)
The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
-a) 2.089E-01 A
-b) 2.298E-01 A
+c) 2.528E-01 A
-d) 2.781E-01 A
-e) 3.059E-01 A

2) A battery with a terminal voltage of 8.41 V is connected to a circuit consisting of 3 16.1 Ω resistors and one 10.9 Ω resistor. What is the voltage drop across the 10.9 Ω resistor?

-a) 1.058E+00 V
-b) 1.163E+00 V
-c) 1.280E+00 V
-d) 1.408E+00 V
+e) 1.548E+00 V
3)
In the circuit shown V=19.6 V, R1=1.45 Ω, R2=7.85 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
-a) 2.730E+01 W
+b) 3.003E+01 W
-c) 3.304E+01 W
-d) 3.634E+01 W
-e) 3.998E+01 W
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
-a) 2.177E+01 s
+b) 2.394E+01 s
-c) 2.634E+01 s
-d) 2.897E+01 s
-e) 3.187E+01 s

Click these links for the keys:

#### Key: L2

1)
The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
+a) 1.401E-01 A
-b) 1.542E-01 A
-c) 1.696E-01 A
-d) 1.865E-01 A
-e) 2.052E-01 A
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 467 V. If the combined external and internal resistance is 172 &Omega and the capacitance is 74 mF, how long will it take for the capacitor's voltage to reach 258.0 V?
-a) 7.688E+00 s
-b) 8.457E+00 s
-c) 9.303E+00 s
+d) 1.023E+01 s
-e) 1.126E+01 s

3) A battery with a terminal voltage of 8.14 V is connected to a circuit consisting of 2 21.5 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?

-a) 1.298E+00 V
-b) 1.428E+00 V
-c) 1.571E+00 V
-d) 1.728E+00 V
+e) 1.901E+00 V
4)
In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
-a) 7.123E+00 W
-b) 7.835E+00 W
-c) 8.618E+00 W
-d) 9.480E+00 W
+e) 1.043E+01 W

Click these links for the keys:

### Key: M0

1) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?

-a) 1.552E+00 V
-b) 1.707E+00 V
+c) 1.878E+00 V
-d) 2.066E+00 V
-e) 2.272E+00 V
2)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
3)
In the circuit shown V=17.5 V, R1=2.34 Ω, R2=7.1 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
-a) 1.784E+01 W
+b) 1.963E+01 W
-c) 2.159E+01 W
-d) 2.375E+01 W
-e) 2.612E+01 W
4)
Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 4.342E+00 V
-b) 4.776E+00 V
-c) 5.254E+00 V
+d) 5.779E+00 V
-e) 6.357E+00 V

Click these links for the keys:

#### Key: M1

1)
The resistances in the figure shown are R1= 2.54 Ω, R2= 1.15 Ω, and R2= 2.9 Ω. V1 and V3 are text 0.446 V and 3.39 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
+a) 1.285E-01 A
-b) 1.414E-01 A
-c) 1.555E-01 A
-d) 1.711E-01 A
-e) 1.882E-01 A

2) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?

-a) 2.352E+00 V
-b) 2.587E+00 V
-c) 2.846E+00 V
-d) 3.131E+00 V
+e) 3.444E+00 V
3)
Two sources of emf ε1=40.9 V, and ε2=16.1 V are oriented as shownin the circuit. The resistances are R1=5.55 kΩ and R2=1.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.11 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.754E+00 V
-b) 9.630E+00 V
-c) 1.059E+01 V
-d) 1.165E+01 V
+e) 1.282E+01 V
4)
In the circuit shown V=11.9 V, R1=2.75 Ω, R2=7.19 Ω, and R3=14.6 Ω. What is the power dissipated by R2?
+a) 7.982E+00 W
-b) 8.780E+00 W
-c) 9.658E+00 W
-d) 1.062E+01 W
-e) 1.169E+01 W

Click these links for the keys:

#### Key: M2

1) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?

-a) 2.352E+00 V
-b) 2.587E+00 V
-c) 2.846E+00 V
-d) 3.131E+00 V
+e) 3.444E+00 V
2)
Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.334E+00 V
-b) 9.167E+00 V
+c) 1.008E+01 V
-d) 1.109E+01 V
-e) 1.220E+01 V
3)
The resistances in the figure shown are R1= 2.67 Ω, R2= 1.78 Ω, and R2= 3.63 Ω. V1 and V3 are text 0.448 V and 2.29 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.656 V. What is the absolute value of the current through R1?
-a) 9.287E-02 A
-b) 1.022E-01 A
-c) 1.124E-01 A
+d) 1.236E-01 A
-e) 1.360E-01 A
4)
In the circuit shown V=18.8 V, R1=2.59 Ω, R2=5.47 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
-a) 2.191E+01 W
+b) 2.410E+01 W
-c) 2.651E+01 W
-d) 2.916E+01 W
-e) 3.208E+01 W

Click these links for the keys:

### Key: N0

1)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
-a) 1.203E-01 A
-b) 1.324E-01 A
+c) 1.456E-01 A
-d) 1.602E-01 A
-e) 1.762E-01 A

2) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.2 Ω resistor. What is the voltage drop across the 10.2 Ω resistor?

-a) 2.074E+00 V
-b) 2.282E+00 V
+c) 2.510E+00 V
-d) 2.761E+00 V
-e) 3.037E+00 V
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
-a) 1.385E+01 s
+b) 1.524E+01 s
-c) 1.676E+01 s
-d) 1.844E+01 s
-e) 2.028E+01 s
4)
Two sources of emf ε1=43.0 V, and ε2=13.8 V are oriented as shownin the circuit. The resistances are R1=3.97 kΩ and R2=1.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.25 mA and I4=1.82 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 3.661E+00 mA
-b) 4.027E+00 mA
+c) 4.430E+00 mA
-d) 4.873E+00 mA
-e) 5.360E+00 mA

Click these links for the keys:

#### Key: N1

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
-a) 2.177E+01 s
+b) 2.394E+01 s
-c) 2.634E+01 s
-d) 2.897E+01 s
-e) 3.187E+01 s
2)
Two sources of emf ε1=43.7 V, and ε2=13.1 V are oriented as shownin the circuit. The resistances are R1=5.21 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.86 mA and I4=0.9 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.691E+00 mA
+b) 2.960E+00 mA
-c) 3.256E+00 mA
-d) 3.582E+00 mA
-e) 3.940E+00 mA

3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?

-a) 1.709E+00 V
+b) 1.880E+00 V
-c) 2.068E+00 V
-d) 2.275E+00 V
-e) 2.503E+00 V
4)
The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
-a) 2.089E-01 A
-b) 2.298E-01 A
+c) 2.528E-01 A
-d) 2.781E-01 A
-e) 3.059E-01 A

Click these links for the keys:

#### Key: N2

1) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?

-a) 1.202E+00 V
+b) 1.323E+00 V
-c) 1.455E+00 V
-d) 1.600E+00 V
-e) 1.761E+00 V
2)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
-a) 1.296E+01 s
-b) 1.425E+01 s
+c) 1.568E+01 s
-d) 1.725E+01 s
-e) 1.897E+01 s
4)
Two sources of emf ε1=36.3 V, and ε2=12.9 V are oriented as shownin the circuit. The resistances are R1=4.28 kΩ and R2=1.58 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.16 mA and I4=1.2 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.224E+00 mA
-b) 2.446E+00 mA
-c) 2.691E+00 mA
+d) 2.960E+00 mA
-e) 3.256E+00 mA

Click these links for the keys:

### Key: O0

1)
Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.825E+00 V
-b) 9.708E+00 V
-c) 1.068E+01 V
-d) 1.175E+01 V
+e) 1.292E+01 V

2) Three resistors, R1 = 1.74 Ω, and R2 = R2 = 3.92 Ω, are connected in parallel to a 8.5 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 2.836E+01 W
-b) 3.120E+01 W
-c) 3.432E+01 W
-d) 3.775E+01 W
+e) 4.152E+01 W
3)
Two sources of emf ε1=44.4 V, and ε2=16.8 V are oriented as shownin the circuit. The resistances are R1=4.58 kΩ and R2=1.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=8.43 mA and I4=1.46 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 6.970E+00 mA
-b) 7.667E+00 mA
-c) 8.434E+00 mA
-d) 9.277E+00 mA
-e) 1.020E+01 mA
4)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A

Click these links for the keys:

#### Key: O1

1)
Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 2.247E+00 mA
-b) 2.472E+00 mA
-c) 2.719E+00 mA
-d) 2.991E+00 mA
-e) 3.290E+00 mA
2)
Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.825E+00 V
-b) 9.708E+00 V
-c) 1.068E+01 V
-d) 1.175E+01 V
+e) 1.292E+01 V
3)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A

4) Three resistors, R1 = 0.855 Ω, and R2 = R2 = 1.91 Ω, are connected in parallel to a 6.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

+a) 5.682E+01 W
-b) 6.250E+01 W
-c) 6.875E+01 W
-d) 7.563E+01 W
-e) 8.319E+01 W

Click these links for the keys:

#### Key: O2

1) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

+a) 1.173E+02 W
-b) 1.290E+02 W
-c) 1.419E+02 W
-d) 1.561E+02 W
-e) 1.717E+02 W
2)
Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.150E+00 mA
-b) 2.365E+00 mA
+c) 2.602E+00 mA
-d) 2.862E+00 mA
-e) 3.148E+00 mA
3)
Two sources of emf ε1=17.3 V, and ε2=6.46 V are oriented as shownin the circuit. The resistances are R1=2.54 kΩ and R2=2.79 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.1 mA and I4=0.281 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 6.488E+00 V
+b) 7.137E+00 V
-c) 7.850E+00 V
-d) 8.635E+00 V
-e) 9.499E+00 V
4)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A

Click these links for the keys:

### Key: P0

1)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A

2) A given battery has a 15 V emf and an internal resistance of 0.162 Ω. If it is connected to a 0.561 Ω resistor what is the power dissipated by that load?

-a) 1.814E+02 W
-b) 1.996E+02 W
-c) 2.195E+02 W
+d) 2.415E+02 W
-e) 2.656E+02 W
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 543 V. If the combined external and internal resistance is 201 &Omega and the capacitance is 82 mF, how long will it take for the capacitor's voltage to reach 281.0 V?
-a) 9.024E+00 s
-b) 9.927E+00 s
-c) 1.092E+01 s
+d) 1.201E+01 s
-e) 1.321E+01 s
4)
Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.093E+01 V
+b) 1.202E+01 V
-c) 1.322E+01 V
-d) 1.454E+01 V
-e) 1.600E+01 V

Click these links for the keys:

#### Key: P1

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
-a) 2.177E+01 s
+b) 2.394E+01 s
-c) 2.634E+01 s
-d) 2.897E+01 s
-e) 3.187E+01 s
2)
Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.921E+01 V
+b) 2.114E+01 V
-c) 2.325E+01 V
-d) 2.557E+01 V
-e) 2.813E+01 V

3) A given battery has a 12 V emf and an internal resistance of 0.0984 Ω. If it is connected to a 0.485 Ω resistor what is the power dissipated by that load?

+a) 2.052E+02 W
-b) 2.257E+02 W
-c) 2.483E+02 W
-d) 2.731E+02 W
-e) 3.004E+02 W
4)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
-a) 1.203E-01 A
-b) 1.324E-01 A
+c) 1.456E-01 A
-d) 1.602E-01 A
-e) 1.762E-01 A

Click these links for the keys:

#### Key: P2

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 466 V. If the combined external and internal resistance is 123 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 331.0 V?
-a) 9.571E+00 s
-b) 1.053E+01 s
+c) 1.158E+01 s
-d) 1.274E+01 s
-e) 1.401E+01 s
2)
The resistances in the figure shown are R1= 1.33 Ω, R2= 1.72 Ω, and R2= 3.69 Ω. V1 and V3 are text 0.606 V and 3.31 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.608 V. What is the absolute value of the current through R1?
-a) 1.137E-01 A
-b) 1.251E-01 A
-c) 1.376E-01 A
+d) 1.514E-01 A
-e) 1.665E-01 A

3) A given battery has a 13 V emf and an internal resistance of 0.106 Ω. If it is connected to a 0.752 Ω resistor what is the power dissipated by that load?

-a) 1.569E+02 W
+b) 1.726E+02 W
-c) 1.899E+02 W
-d) 2.089E+02 W
-e) 2.298E+02 W
4)
Two sources of emf ε1=38.8 V, and ε2=14.9 V are oriented as shownin the circuit. The resistances are R1=5.83 kΩ and R2=1.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.57 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.013E+01 V
-b) 1.115E+01 V
-c) 1.226E+01 V
+d) 1.349E+01 V
-e) 1.484E+01 V

Click these links for the keys:

### Key: Q0

1) Three resistors, R1 = 1.2 Ω, and R2 = R2 = 2.75 Ω, are connected in parallel to a 6.42 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 2.581E+01 W
-b) 2.839E+01 W
-c) 3.122E+01 W
+d) 3.435E+01 W
-e) 3.778E+01 W
2)
Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.981E+01 V
+b) 2.179E+01 V
-c) 2.397E+01 V
-d) 2.637E+01 V
-e) 2.901E+01 V

3) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?

+a) 2.467E+00 V
-b) 2.714E+00 V
-c) 2.985E+00 V
-d) 3.283E+00 V
-e) 3.612E+00 V
4)
Two sources of emf ε1=26.8 V, and ε2=10.1 V are oriented as shownin the circuit. The resistances are R1=2.2 kΩ and R2=2.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.29 mA and I4=0.464 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 3.436E+00 V
-b) 3.779E+00 V
-c) 4.157E+00 V
-d) 4.573E+00 V
+e) 5.030E+00 V

Click these links for the keys:

#### Key: Q1

1)
Two sources of emf ε1=28.6 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=3.73 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.27 mA and I4=0.774 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 6.641E+00 V
+b) 7.305E+00 V
-c) 8.035E+00 V
-d) 8.839E+00 V
-e) 9.723E+00 V

2) A battery with a terminal voltage of 14.6 V is connected to a circuit consisting of 2 21.7 Ω resistors and one 14.4 Ω resistor. What is the voltage drop across the 14.4 Ω resistor?

+a) 3.637E+00 V
-b) 4.001E+00 V
-c) 4.401E+00 V
-d) 4.841E+00 V
-e) 5.325E+00 V
3)
Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.779E+01 V
-b) 1.957E+01 V
-c) 2.153E+01 V
-d) 2.368E+01 V
-e) 2.605E+01 V

4) Three resistors, R1 = 1.74 Ω, and R2 = R2 = 3.92 Ω, are connected in parallel to a 8.5 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 2.836E+01 W
-b) 3.120E+01 W
-c) 3.432E+01 W
-d) 3.775E+01 W
+e) 4.152E+01 W

Click these links for the keys:

#### Key: Q2

1) A battery with a terminal voltage of 12.4 V is connected to a circuit consisting of 3 21.6 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?

-a) 1.333E+00 V
-b) 1.466E+00 V
-c) 1.612E+00 V
-d) 1.774E+00 V
+e) 1.951E+00 V
2)
Two sources of emf ε1=24.4 V, and ε2=6.73 V are oriented as shownin the circuit. The resistances are R1=5.7 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.36 mA and I4=0.418 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 5.418E+00 V
-b) 5.960E+00 V
-c) 6.556E+00 V
-d) 7.212E+00 V
+e) 7.933E+00 V

3) Three resistors, R1 = 1.31 Ω, and R2 = R2 = 2.91 Ω, are connected in parallel to a 6.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 2.294E+01 W
-b) 2.523E+01 W
+c) 2.776E+01 W
-d) 3.053E+01 W
-e) 3.359E+01 W
4)
Two sources of emf ε1=26.2 V, and ε2=8.29 V are oriented as shownin the circuit. The resistances are R1=3.43 kΩ and R2=1.16 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.09 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 6.720E+00 V
-b) 7.392E+00 V
-c) 8.131E+00 V
-d) 8.944E+00 V
+e) 9.838E+00 V

Click these links for the keys:

### Key: R0

1)
The resistances in the figure shown are R1= 1.18 Ω, R2= 0.878 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.637 V and 3.51 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.547 V. What is the absolute value of the current through R1?
-a) 1.701E-01 A
+b) 1.871E-01 A
-c) 2.058E-01 A
-d) 2.264E-01 A
-e) 2.490E-01 A

2) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

+a) 1.173E+02 W
-b) 1.290E+02 W
-c) 1.419E+02 W
-d) 1.561E+02 W
-e) 1.717E+02 W
3)
Two sources of emf ε1=46.1 V, and ε2=16.2 V are oriented as shownin the circuit. The resistances are R1=5.17 kΩ and R2=2.06 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.97 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.309E+01 V
-b) 1.440E+01 V
+c) 1.584E+01 V
-d) 1.742E+01 V
-e) 1.917E+01 V

4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?

-a) 1.229E+02 W
-b) 1.352E+02 W
-c) 1.487E+02 W
+d) 1.636E+02 W
-e) 1.799E+02 W

Click these links for the keys:

#### Key: R1

1)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
-a) 1.203E-01 A
-b) 1.324E-01 A
+c) 1.456E-01 A
-d) 1.602E-01 A
-e) 1.762E-01 A

2) A given battery has a 13 V emf and an internal resistance of 0.161 Ω. If it is connected to a 0.814 Ω resistor what is the power dissipated by that load?

-a) 1.087E+02 W
-b) 1.196E+02 W
-c) 1.316E+02 W
+d) 1.447E+02 W
-e) 1.592E+02 W

3) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

+a) 1.173E+02 W
-b) 1.290E+02 W
-c) 1.419E+02 W
-d) 1.561E+02 W
-e) 1.717E+02 W
4)
Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.981E+01 V
+b) 2.179E+01 V
-c) 2.397E+01 V
-d) 2.637E+01 V
-e) 2.901E+01 V

Click these links for the keys:

#### Key: R2

1)
Two sources of emf ε1=36.7 V, and ε2=12.1 V are oriented as shownin the circuit. The resistances are R1=2.52 kΩ and R2=1.22 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.14 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 7.805E+00 V
-b) 8.586E+00 V
-c) 9.444E+00 V
-d) 1.039E+01 V
+e) 1.143E+01 V

2) Three resistors, R1 = 1.82 Ω, and R2 = R2 = 4.14 Ω, are connected in parallel to a 5.65 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

+a) 1.754E+01 W
-b) 1.929E+01 W
-c) 2.122E+01 W
-d) 2.335E+01 W
-e) 2.568E+01 W
3)
The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
+a) 1.401E-01 A
-b) 1.542E-01 A
-c) 1.696E-01 A
-d) 1.865E-01 A
-e) 2.052E-01 A

4) A given battery has a 12 V emf and an internal resistance of 0.0984 Ω. If it is connected to a 0.485 Ω resistor what is the power dissipated by that load?

+a) 2.052E+02 W
-b) 2.257E+02 W
-c) 2.483E+02 W
-d) 2.731E+02 W
-e) 3.004E+02 W

Click these links for the keys:

### Key: S0

1)
Two sources of emf ε1=39.2 V, and ε2=12.6 V are oriented as shownin the circuit. The resistances are R1=3.86 kΩ and R2=1.89 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.05 mA and I4=0.701 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 8.687E+00 V
-b) 9.555E+00 V
-c) 1.051E+01 V
-d) 1.156E+01 V
+e) 1.272E+01 V

2) Three resistors, R1 = 1.2 Ω, and R2 = R2 = 2.75 Ω, are connected in parallel to a 6.42 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 2.581E+01 W
-b) 2.839E+01 W
-c) 3.122E+01 W
+d) 3.435E+01 W
-e) 3.778E+01 W
3)
Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.150E+00 mA
-b) 2.365E+00 mA
+c) 2.602E+00 mA
-d) 2.862E+00 mA
-e) 3.148E+00 mA

4) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?

-a) 2.352E+00 V
-b) 2.587E+00 V
-c) 2.846E+00 V
-d) 3.131E+00 V
+e) 3.444E+00 V

Click these links for the keys:

#### Key: S1

1)
Two sources of emf ε1=36.3 V, and ε2=12.9 V are oriented as shownin the circuit. The resistances are R1=4.28 kΩ and R2=1.58 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.16 mA and I4=1.2 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.224E+00 mA
-b) 2.446E+00 mA
-c) 2.691E+00 mA
+d) 2.960E+00 mA
-e) 3.256E+00 mA

2) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?

+a) 1.234E+00 V
-b) 1.358E+00 V
-c) 1.493E+00 V
-d) 1.643E+00 V
-e) 1.807E+00 V
3)
Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.108E+00 V
+b) 4.519E+00 V
-c) 4.970E+00 V
-d) 5.468E+00 V
-e) 6.014E+00 V

4) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 6.977E+01 W
-b) 7.674E+01 W
+c) 8.442E+01 W
-d) 9.286E+01 W
-e) 1.021E+02 W

Click these links for the keys:

#### Key: S2

1) A battery with a terminal voltage of 8.72 V is connected to a circuit consisting of 2 15.8 Ω resistors and one 9.58 Ω resistor. What is the voltage drop across the 9.58 Ω resistor?

-a) 1.677E+00 V
-b) 1.844E+00 V
+c) 2.029E+00 V
-d) 2.231E+00 V
-e) 2.455E+00 V
2)
Two sources of emf ε1=24.8 V, and ε2=10.3 V are oriented as shownin the circuit. The resistances are R1=2.19 kΩ and R2=1.6 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.49 mA and I4=0.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 1.660E+00 mA
-b) 1.826E+00 mA
-c) 2.009E+00 mA
-d) 2.209E+00 mA
-e) 2.430E+00 mA
3)
Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.093E+01 V
+b) 1.202E+01 V
-c) 1.322E+01 V
-d) 1.454E+01 V
-e) 1.600E+01 V

4) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 5.184E+01 W
+b) 5.702E+01 W
-c) 6.272E+01 W
-d) 6.900E+01 W
-e) 7.590E+01 W

Click these links for the keys:

### Key: T0

1)
In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
-a) 1.446E+01 W
-b) 1.591E+01 W
-c) 1.750E+01 W
-d) 1.925E+01 W
+e) 2.117E+01 W

2) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?

-a) 1.552E+00 V
-b) 1.707E+00 V
+c) 1.878E+00 V
-d) 2.066E+00 V
-e) 2.272E+00 V
3)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A

4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?

-a) 1.229E+02 W
-b) 1.352E+02 W
-c) 1.487E+02 W
+d) 1.636E+02 W
-e) 1.799E+02 W

Click these links for the keys:

#### Key: T1

1) A given battery has a 13 V emf and an internal resistance of 0.113 Ω. If it is connected to a 0.686 Ω resistor what is the power dissipated by that load?

-a) 1.501E+02 W
-b) 1.651E+02 W
+c) 1.816E+02 W
-d) 1.998E+02 W
-e) 2.197E+02 W
2)
In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
+a) 1.713E+01 W
-b) 1.885E+01 W
-c) 2.073E+01 W
-d) 2.280E+01 W
-e) 2.508E+01 W
3)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A

4) A battery with a terminal voltage of 13.2 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.3 Ω resistor. What is the voltage drop across the 10.3 Ω resistor?

-a) 1.958E+00 V
-b) 2.153E+00 V
+c) 2.369E+00 V
-d) 2.606E+00 V
-e) 2.866E+00 V

Click these links for the keys:

#### Key: T2

1)
In the circuit shown V=19.6 V, R1=1.45 Ω, R2=7.85 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
-a) 2.730E+01 W
+b) 3.003E+01 W
-c) 3.304E+01 W
-d) 3.634E+01 W
-e) 3.998E+01 W
2)
The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
-a) 1.427E-01 A
-b) 1.569E-01 A
+c) 1.726E-01 A
-d) 1.899E-01 A
-e) 2.089E-01 A

3) A battery with a terminal voltage of 14.6 V is connected to a circuit consisting of 2 21.7 Ω resistors and one 14.4 Ω resistor. What is the voltage drop across the 14.4 Ω resistor?

+a) 3.637E+00 V
-b) 4.001E+00 V
-c) 4.401E+00 V
-d) 4.841E+00 V
-e) 5.325E+00 V

4) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?

-a) 1.419E+02 W
-b) 1.561E+02 W
-c) 1.717E+02 W
+d) 1.889E+02 W
-e) 2.078E+02 W

Click these links for the keys:

### Key: U0

1)
Two sources of emf ε1=14.3 V, and ε2=5.6 V are oriented as shownin the circuit. The resistances are R1=5.31 kΩ and R2=2.39 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.12 mA and I4=0.284 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 3.416E+00 V
-b) 3.757E+00 V
-c) 4.133E+00 V
+d) 4.546E+00 V
-e) 5.001E+00 V
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
-a) 5.401E+00 s
-b) 5.941E+00 s
-c) 6.535E+00 s
-d) 7.189E+00 s
+e) 7.908E+00 s
3)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A

4) Three resistors, R1 = 0.61 Ω, and R2 = R2 = 1.35 Ω, are connected in parallel to a 7.04 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 7.386E+01 W
+b) 8.125E+01 W
-c) 8.937E+01 W
-d) 9.831E+01 W
-e) 1.081E+02 W

Click these links for the keys:

#### Key: U1

1) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 4.890E+01 W
-b) 5.379E+01 W
+c) 5.917E+01 W
-d) 6.508E+01 W
-e) 7.159E+01 W
2)
Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 4.342E+00 V
-b) 4.776E+00 V
-c) 5.254E+00 V
+d) 5.779E+00 V
-e) 6.357E+00 V
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
+a) 1.905E+01 s
-b) 2.095E+01 s
-c) 2.304E+01 s
-d) 2.535E+01 s
-e) 2.788E+01 s
4)
The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
-a) 1.427E-01 A
-b) 1.569E-01 A
+c) 1.726E-01 A
-d) 1.899E-01 A
-e) 2.089E-01 A

Click these links for the keys:

#### Key: U2

1)
Two sources of emf ε1=21.6 V, and ε2=8.59 V are oriented as shownin the circuit. The resistances are R1=4.97 kΩ and R2=1.69 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.2 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 6.064E+00 V
-b) 6.670E+00 V
+c) 7.337E+00 V
-d) 8.071E+00 V
-e) 8.878E+00 V
2)
The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
-a) 2.089E-01 A
-b) 2.298E-01 A
+c) 2.528E-01 A
-d) 2.781E-01 A
-e) 3.059E-01 A
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 554 V. If the combined external and internal resistance is 228 &Omega and the capacitance is 93 mF, how long will it take for the capacitor's voltage to reach 450.0 V?
-a) 3.224E+01 s
+b) 3.547E+01 s
-c) 3.902E+01 s
-d) 4.292E+01 s
-e) 4.721E+01 s

4) Three resistors, R1 = 0.624 Ω, and R2 = R2 = 1.37 Ω, are connected in parallel to a 7.46 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 7.371E+01 W
-b) 8.108E+01 W
+c) 8.919E+01 W
-d) 9.810E+01 W
-e) 1.079E+02 W

Click these links for the keys:

### Key: V0

1) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?

-a) 1.419E+02 W
-b) 1.561E+02 W
-c) 1.717E+02 W
+d) 1.889E+02 W
-e) 2.078E+02 W
2)
In the circuit shown V=15.4 V, R1=2.77 Ω, R2=6.07 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
-a) 1.190E+01 W
-b) 1.309E+01 W
+c) 1.440E+01 W
-d) 1.584E+01 W
-e) 1.742E+01 W
3)
The resistances in the figure shown are R1= 1.54 Ω, R2= 0.927 Ω, and R2= 2.46 Ω. V1 and V3 are text 0.632 V and 2.12 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.586 V. What is the absolute value of the current through R1?
-a) 1.770E-01 A
-b) 1.947E-01 A
+c) 2.141E-01 A
-d) 2.355E-01 A
-e) 2.591E-01 A
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
-a) 1.296E+01 s
-b) 1.425E+01 s
+c) 1.568E+01 s
-d) 1.725E+01 s
-e) 1.897E+01 s

Click these links for the keys:

#### Key: V1

1) A given battery has a 14 V emf and an internal resistance of 0.132 Ω. If it is connected to a 0.689 Ω resistor what is the power dissipated by that load?

-a) 1.656E+02 W
-b) 1.821E+02 W
+c) 2.003E+02 W
-d) 2.204E+02 W
-e) 2.424E+02 W
2)
The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
-a) 2.089E-01 A
-b) 2.298E-01 A
+c) 2.528E-01 A
-d) 2.781E-01 A
-e) 3.059E-01 A
3)
In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
-a) 1.446E+01 W
-b) 1.591E+01 W
-c) 1.750E+01 W
-d) 1.925E+01 W
+e) 2.117E+01 W
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 351 V. If the combined external and internal resistance is 148 &Omega and the capacitance is 60 mF, how long will it take for the capacitor's voltage to reach 227.0 V?
+a) 9.240E+00 s
-b) 1.016E+01 s
-c) 1.118E+01 s
-d) 1.230E+01 s
-e) 1.353E+01 s

Click these links for the keys:

#### Key: V2

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 543 V. If the combined external and internal resistance is 201 &Omega and the capacitance is 82 mF, how long will it take for the capacitor's voltage to reach 281.0 V?
-a) 9.024E+00 s
-b) 9.927E+00 s
-c) 1.092E+01 s
+d) 1.201E+01 s
-e) 1.321E+01 s
2)
In the circuit shown V=10.8 V, R1=1.26 Ω, R2=5.65 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
-a) 8.240E+00 W
-b) 9.064E+00 W
-c) 9.970E+00 W
-d) 1.097E+01 W
+e) 1.206E+01 W

3) A given battery has a 13 V emf and an internal resistance of 0.159 Ω. If it is connected to a 0.617 Ω resistor what is the power dissipated by that load?

-a) 1.301E+02 W
-b) 1.431E+02 W
-c) 1.574E+02 W
+d) 1.732E+02 W
-e) 1.905E+02 W
4)
The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
-a) 1.834E-01 A
+b) 2.018E-01 A
-c) 2.220E-01 A
-d) 2.441E-01 A
-e) 2.686E-01 A

Click these links for the keys:

### Key: W0

1) Three resistors, R1 = 1.52 Ω, and R2 = R2 = 3.38 Ω, are connected in parallel to a 5.82 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 1.842E+01 W
-b) 2.026E+01 W
+c) 2.228E+01 W
-d) 2.451E+01 W
-e) 2.696E+01 W

2) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?

-a) 2.843E+00 V
-b) 3.127E+00 V
+c) 3.440E+00 V
-d) 3.784E+00 V
-e) 4.162E+00 V
3)
Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 1.299E+00 mA
-b) 1.429E+00 mA
-c) 1.572E+00 mA
-d) 1.729E+00 mA
-e) 1.902E+00 mA
4)
The resistances in the figure shown are R1= 2.74 Ω, R2= 1.63 Ω, and R2= 2.75 Ω. V1 and V3 are text 0.485 V and 2.01 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.555 V. What is the absolute value of the current through R1?
-a) 1.114E-01 A
+b) 1.225E-01 A
-c) 1.348E-01 A
-d) 1.483E-01 A
-e) 1.631E-01 A

Click these links for the keys:

#### Key: W1

1) A battery with a terminal voltage of 10.7 V is connected to a circuit consisting of 2 24.5 Ω resistors and one 15.2 Ω resistor. What is the voltage drop across the 15.2 Ω resistor?

-a) 1.730E+00 V
-b) 1.903E+00 V
-c) 2.094E+00 V
-d) 2.303E+00 V
+e) 2.533E+00 V
2)
The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
-a) 1.427E-01 A
-b) 1.569E-01 A
+c) 1.726E-01 A
-d) 1.899E-01 A
-e) 2.089E-01 A

3) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 4.890E+01 W
-b) 5.379E+01 W
+c) 5.917E+01 W
-d) 6.508E+01 W
-e) 7.159E+01 W
4)
Two sources of emf ε1=24.9 V, and ε2=10.1 V are oriented as shownin the circuit. The resistances are R1=2.32 kΩ and R2=2.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.74 mA and I4=0.444 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 1.725E+00 mA
-b) 1.898E+00 mA
-c) 2.087E+00 mA
+d) 2.296E+00 mA
-e) 2.526E+00 mA

Click these links for the keys:

#### Key: W2

1) Three resistors, R1 = 0.672 Ω, and R2 = R2 = 1.52 Ω, are connected in parallel to a 5.34 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 2.898E+01 W
-b) 3.188E+01 W
-c) 3.507E+01 W
-d) 3.858E+01 W
+e) 4.243E+01 W
2)
The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A
3)
Two sources of emf ε1=29.3 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=5.65 kΩ and R2=2.68 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.81 mA and I4=0.525 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 1.717E+00 mA
-b) 1.888E+00 mA
-c) 2.077E+00 mA
+d) 2.285E+00 mA
-e) 2.514E+00 mA

4) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?

-a) 2.843E+00 V
-b) 3.127E+00 V
+c) 3.440E+00 V
-d) 3.784E+00 V
-e) 4.162E+00 V

Click these links for the keys:

### Key: X0

1)
The resistances in the figure shown are R1= 2.34 Ω, R2= 1.34 Ω, and R2= 2.94 Ω. V1 and V3 are text 0.609 V and 1.68 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.541 V. What is the absolute value of the current through R1?
-a) 1.464E-01 A
+b) 1.610E-01 A
-c) 1.772E-01 A
-d) 1.949E-01 A
-e) 2.144E-01 A
2)
Two sources of emf ε1=44.4 V, and ε2=16.8 V are oriented as shownin the circuit. The resistances are R1=4.58 kΩ and R2=1.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=8.43 mA and I4=1.46 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 6.970E+00 mA
-b) 7.667E+00 mA
-c) 8.434E+00 mA
-d) 9.277E+00 mA
-e) 1.020E+01 mA

3) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

+a) 1.173E+02 W
-b) 1.290E+02 W
-c) 1.419E+02 W
-d) 1.561E+02 W
-e) 1.717E+02 W
4)
Two sources of emf ε1=38.9 V, and ε2=14.4 V are oriented as shownin the circuit. The resistances are R1=4.33 kΩ and R2=1.65 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.59 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 9.142E+00 V
-b) 1.006E+01 V
+c) 1.106E+01 V
-d) 1.217E+01 V
-e) 1.338E+01 V

Click these links for the keys:

#### Key: X1

1) Three resistors, R1 = 1.82 Ω, and R2 = R2 = 4.14 Ω, are connected in parallel to a 5.65 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

+a) 1.754E+01 W
-b) 1.929E+01 W
-c) 2.122E+01 W
-d) 2.335E+01 W
-e) 2.568E+01 W
2)
Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 2.247E+00 mA
-b) 2.472E+00 mA
-c) 2.719E+00 mA
-d) 2.991E+00 mA
-e) 3.290E+00 mA
3)
The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A
4)
Two sources of emf ε1=27.1 V, and ε2=8.04 V are oriented as shownin the circuit. The resistances are R1=2.94 kΩ and R2=1.61 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.87 mA and I4=0.57 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 8.482E+00 V
+b) 9.330E+00 V
-c) 1.026E+01 V
-d) 1.129E+01 V
-e) 1.242E+01 V

Click these links for the keys:

#### Key: X2

1)
Two sources of emf ε1=49.6 V, and ε2=19.3 V are oriented as shownin the circuit. The resistances are R1=4.87 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.37 mA and I4=1.01 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 3.055E+00 mA
+b) 3.360E+00 mA
-c) 3.696E+00 mA
-d) 4.066E+00 mA
-e) 4.472E+00 mA

2) Three resistors, R1 = 1.23 Ω, and R2 = R2 = 2.73 Ω, are connected in parallel to a 5.41 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)

-a) 1.788E+01 W
-b) 1.967E+01 W
-c) 2.163E+01 W
+d) 2.380E+01 W
-e) 2.617E+01 W
3)
Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.108E+00 V
+b) 4.519E+00 V
-c) 4.970E+00 V
-d) 5.468E+00 V
-e) 6.014E+00 V
4)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A

Click these links for the keys:

### Key: Y0

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 569 V. If the combined external and internal resistance is 137 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 419.0 V?
-a) 1.043E+01 s
-b) 1.147E+01 s
-c) 1.262E+01 s
+d) 1.388E+01 s
-e) 1.527E+01 s
2)
In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
-a) 7.123E+00 W
-b) 7.835E+00 W
-c) 8.618E+00 W
-d) 9.480E+00 W
+e) 1.043E+01 W

3) A battery with a terminal voltage of 8.01 V is connected to a circuit consisting of 3 22.1 Ω resistors and one 14.5 Ω resistor. What is the voltage drop across the 14.5 Ω resistor?

-a) 9.818E-01 V
-b) 1.080E+00 V
-c) 1.188E+00 V
-d) 1.307E+00 V
+e) 1.437E+00 V
4)
Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 1.299E+00 mA
-b) 1.429E+00 mA
-c) 1.572E+00 mA
-d) 1.729E+00 mA
-e) 1.902E+00 mA

Click these links for the keys:

#### Key: Y1

1)
Two sources of emf ε1=38.9 V, and ε2=15.7 V are oriented as shownin the circuit. The resistances are R1=2.24 kΩ and R2=2.23 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.01 mA and I4=0.86 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 1.955E+00 mA
+b) 2.150E+00 mA
-c) 2.365E+00 mA
-d) 2.601E+00 mA
-e) 2.862E+00 mA
2)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
-a) 9.718E+00 s
-b) 1.069E+01 s
+c) 1.176E+01 s
-d) 1.293E+01 s
-e) 1.423E+01 s
3)
In the circuit shown V=15.8 V, R1=1.86 Ω, R2=7.66 Ω, and R3=12.9 Ω. What is the power dissipated by R2?
-a) 1.157E+01 W
-b) 1.273E+01 W
-c) 1.400E+01 W
-d) 1.540E+01 W
+e) 1.694E+01 W

4) A battery with a terminal voltage of 8.14 V is connected to a circuit consisting of 2 21.5 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?

-a) 1.298E+00 V
-b) 1.428E+00 V
-c) 1.571E+00 V
-d) 1.728E+00 V
+e) 1.901E+00 V

Click these links for the keys:

#### Key: Y2

1) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.2 Ω resistor. What is the voltage drop across the 10.2 Ω resistor?

-a) 2.074E+00 V
-b) 2.282E+00 V
+c) 2.510E+00 V
-d) 2.761E+00 V
-e) 3.037E+00 V
2)
Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.150E+00 mA
-b) 2.365E+00 mA
+c) 2.602E+00 mA
-d) 2.862E+00 mA
-e) 3.148E+00 mA
3)
In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
+a) 1.713E+01 W
-b) 1.885E+01 W
-c) 2.073E+01 W
-d) 2.280E+01 W
-e) 2.508E+01 W
4)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
+a) 1.905E+01 s
-b) 2.095E+01 s
-c) 2.304E+01 s
-d) 2.535E+01 s
-e) 2.788E+01 s

Click these links for the keys:

### Key: Z0

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
-a) 9.718E+00 s
-b) 1.069E+01 s
+c) 1.176E+01 s
-d) 1.293E+01 s
-e) 1.423E+01 s
2)
The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
3)
Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.093E+01 V
+b) 1.202E+01 V
-c) 1.322E+01 V
-d) 1.454E+01 V
-e) 1.600E+01 V
4)
Two sources of emf ε1=36.7 V, and ε2=12.1 V are oriented as shownin the circuit. The resistances are R1=2.52 kΩ and R2=1.22 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.14 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 7.805E+00 V
-b) 8.586E+00 V
-c) 9.444E+00 V
-d) 1.039E+01 V
+e) 1.143E+01 V

Click these links for the keys:

#### Key: Z1

1)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 466 V. If the combined external and internal resistance is 123 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 331.0 V?
-a) 9.571E+00 s
-b) 1.053E+01 s
+c) 1.158E+01 s
-d) 1.274E+01 s
-e) 1.401E+01 s
2)
The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
-a) 1.427E-01 A
-b) 1.569E-01 A
+c) 1.726E-01 A
-d) 1.899E-01 A
-e) 2.089E-01 A
3)
Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.921E+01 V
+b) 2.114E+01 V
-c) 2.325E+01 V
-d) 2.557E+01 V
-e) 2.813E+01 V
4)
Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 4.342E+00 V
-b) 4.776E+00 V
-c) 5.254E+00 V
+d) 5.779E+00 V
-e) 6.357E+00 V

Click these links for the keys:

#### Key: Z2

1)
Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.779E+01 V
-b) 1.957E+01 V
-c) 2.153E+01 V
-d) 2.368E+01 V
-e) 2.605E+01 V
2)
Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
+a) 5.267E+00 V
-b) 5.794E+00 V
-c) 6.373E+00 V
-d) 7.011E+00 V
-e) 7.712E+00 V
3)
In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
-a) 1.385E+01 s
+b) 1.524E+01 s
-c) 1.676E+01 s
-d) 1.844E+01 s
-e) 2.028E+01 s
4)
The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
-a) 1.203E-01 A
-b) 1.324E-01 A
+c) 1.456E-01 A
-d) 1.602E-01 A
-e) 1.762E-01 A

Click these links for the keys: