Primitive function and Riemann-Integral/1 over x sin 1 over x^2/Example

From Wikiversity
Jump to navigation Jump to search

We consider the function

given by

Failed to parse (unknown function "\begin{cases}"): {\displaystyle {{}} f(t) := \begin{cases} 0 \text{ for } t <table class="metadata plainlinks ambox ambox-notice" style=""> <tr> <td class="mbox-image"><div style="width: 52px;"> [[File:Wikiversity logo 2017.svg|50px|link=]]</div></td> <td class="mbox-text" style=""> '''[[m:Soft redirect|Soft redirect]]'''<br />This page can be found at <span id="SoftRedirect">[[mw:Help:Magic words#Other]]</span>. </td> </tr> </table>[[Category:Wikiversity soft redirects|Primitive function and Riemann-Integral/1 over x sin 1 over x^2/Example]] __NOINDEX__ 0, \\ \frac{1}{t} \sin \frac{1}{t^2} \text{ for } t \neq 0 \, .\end{cases} \, }

This function is not Riemann-integrable, because it it neither bounded from above nor from below. Hence, there exist no upper step functions for . However, still has a primitive function. To see this, we consider the function

Failed to parse (unknown function "\begin{cases}"): {\displaystyle {{}} H(t) := \begin{cases} 0 \text{ for } t <table class="metadata plainlinks ambox ambox-notice" style=""> <tr> <td class="mbox-image"><div style="width: 52px;"> [[File:Wikiversity logo 2017.svg|50px|link=]]</div></td> <td class="mbox-text" style=""> '''[[m:Soft redirect|Soft redirect]]'''<br />This page can be found at <span id="SoftRedirect">[[mw:Help:Magic words#Other]]</span>. </td> </tr> </table>[[Category:Wikiversity soft redirects|Primitive function and Riemann-Integral/1 over x sin 1 over x^2/Example]] __NOINDEX__ 0, \\ \frac{ t^2}{2} \cos \frac{1}{t^2} \text{ for } t \neq 0 \, .\end{cases} \, }

This function is differentiable. For , the derivative is

For , the difference quotient is

For , the limit exists and equals , so that is differentiable everywhere (but not continuously differentiable). The first summand in is continuous, and therefore, due to

it has a primitive function . Hence is a primitive function for . This follows for from the explicit derivative and for from