Let T ⊆ R {\displaystyle {}T\subseteq \mathbb {R} } denote a subset and a ∈ R {\displaystyle {}a\in \mathbb {R} } a point. Let
be a function. Then b ∈ R {\displaystyle {}b\in \mathbb {R} } is called limit of f {\displaystyle {}f} in a {\displaystyle {}a} , if for every ϵ > 0 {\displaystyle {}\epsilon >0} there exists some δ > 0 {\displaystyle {}\delta >0} such that for all x ∈ T {\displaystyle {}x\in T} fulfilling
the estimate
holds. In this case, we write