Jump to content

Portal:Radiation astronomy/X-ray astronomy article/8

From Wikiversity
Classified as a Peculiar star, Eta Carinae exhibits a superstar at its center as seen in this image from Chandra. The new X-ray observation shows three distinct structures: an outer, horseshoe-shaped ring about 2 light years in diameter, a hot inner core about 3 light-months in diameter, and a hot central source less than 1 light-month in diameter which may contain the superstar that drives the whole show. The outer ring provides evidence of another large explosion that occurred over 1,000 years ago. Credit: Chandra Science Center and NASA.

Stellar X-ray astronomy started on April 5, 1974, with the detection of X-rays from Capella. A rocket flight on that date briefly calibrated its attitude control system when a star sensor pointed the payload axis at Capella (α Aur). During this period, X-rays in the range 0.2-1.6 keV were detected by an X-ray reflector system co-aligned with the star sensor. Since that event a large number of stars have been studied using their X-radiation emission.

Three structures around Eta Carinae are thought to represent shock waves produced by matter rushing away from the superstar at supersonic speeds. The temperature of the shock-heated gas ranges from 60 MK in the central regions to 3 MK on the horseshoe-shaped outer structure. "The Chandra image contains some puzzles for existing ideas of how a star can produce such hot and intense X-rays," says Prof. Kris Davidson of the University of Minnesota. Davidson is principal investigator for the Eta Carina observations by Hubble. "In the most popular theory, X-rays are made by colliding gas streams from two stars so close together that they'd look like a point source to us. But what happens to gas streams that escape to farther distances? The extended hot stuff in the middle of the new image gives demanding new conditions for any theory to meet."