Portal:Radiation astronomy/Resource/32

From Wikiversity
Jump to navigation Jump to search

Radars[edit | edit source]

This image is of asteroid 2012 LZ1 by the Arecibo Observatory in Puerto Rico using the Arecibo Planetary Radar. Credit: Arecibo Observatory.

Radar astronomy is used to detect and study astronomical objects that reflect radio rays.

"The advantages of radar in planetary astronomy result from (1) the observer's control of all the attributes of the coherent signal used to illuminate the target, especially the wave form's time/frequency modulation and polarization; (2) the ability of radar to resolve objects spatially via measurements of the distribution of echo power in time delay and Doppler frequency; (3) the pronounced degree to which delay-Doppler measurements constrain orbits and spin vectors; and (4) centimeter-to-meter wavelengths, which easily penetrate optically opaque planetary clouds and cometary comae, permit investigation of near-surface macrostructure and bulk density, and are sensitive to high concentrations of metal or, in certain situations, ice."[1]

References[edit | edit source]

  1. Steven J. Ostro (October-December 1993). "Planetary radar astronomy". Reviews of Modern Physics 65 (4): 1235-79. doi:10.1103/RevModPhys.65.1235. http://rmp.aps.org/abstract/RMP/v65/i4/p1235_1. Retrieved 2012-02-09.