Portal:Radiation astronomy/Resource/11

From Wikiversity
Jump to navigation Jump to search

Mesons[edit | edit source]

J/Ψ production is graphed. Credit: Fermilab.

A meson is a composite subatomic particle bound together by the strong interaction.

Because mesons are composed of sub-particles, they have a physical size, with a radius roughly one femtometre, which is about 2/3 the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few hundredths of a microsecond. Charged mesons decay (sometimes through intermediate particles) to form electrons and neutrinos. Uncharged mesons may decay to photons.

Mesons are not produced by radioactive decay, but appear in nature only as short-lived products of very high-energy interactions in matter. In cosmic ray interactions, for example, such particles are ordinary protons and neutrons. Mesons are also frequently produced artificially in high-energy particle accelerators that collide protons, anti-protons, or other particles.

In nature, the importance of lighter mesons is that they are the associated quantum-field particles that transmit the nuclear force, in the same way that photons are the particles that transmit the electromagnetic force.

Each type of meson has a corresponding antiparticle (antimeson) in which quarks are replaced by their corresponding antiquarks and vice-versa.

Mesons are subject to both the weak and strong interactions. Mesons with net electric charge also participate in the electromagnetic interaction.

While no meson is stable, those of lower mass are nonetheless more stable than the most massive mesons, and are easier to observe and study in particle accelerators or in cosmic ray experiments. They are also typically less massive than baryons, meaning that they are more easily produced in experiments, and thus exhibit certain higher energy phenomena more readily than baryons composed of the same quarks would.