Portal:Jupiter/Topic/4

From Wikiversity
Jump to navigation Jump to search

Poles[edit]

The familiar banded appearance of Jupiter gradually gives way to a more mottled appearance closer to the north pole. Credit: NASA/JPL/University of Arizona.
Jupiter's northern half (its northern hemisphere) is shown, from pole to equator, in this map produced from images taken by the Cassini spacecraft in 2000. Credit: NASA/JPL/Space Science Institute.
Jupiter's southern half (its southern hemisphere) is shown, from pole to equator, in this map produced from images taken by the Cassini spacecraft in 2000. Credit: NASA/JPL/Space Science Institute.
This image shows Jupiter's south pole, as seen by NASA's Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). Credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles.{{free media}}

"The familiar banded appearance of Jupiter gradually gives way to a more mottled appearance closer to the north pole in this true color image [on the right] taken in 2000 by NASA's Cassini spacecraft."[1]

"The intricate structures seen in the polar region are clouds of different chemical composition, height and thickness. Clouds are organized by winds, and the mottled appearance in the polar regions suggests more vortex-type motion and winds of less vigor at higher latitudes."[1]

"One possible contributor is that the horizontal component of the Coriolis force, which arises from the planet's rotation and is responsible for curving the trajectories of ocean currents and winds on Earth, has its greatest effect at high latitudes and vanishes at the equator. This tends to create small, intense vortices at high latitudes on Jupiter. Another possibility may lie in that fact that Jupiter overall emits nearly as much of its own heat as it absorbs from the Sun, and this internal heat flux is very likely greater at the poles. This condition could lead to enhanced convection at the poles and more vortex-type structures."[1]

"The resolution here is 114 kilometers (71 miles) per pixel. This contrast-enhanced, edge-sharpened frame was composited from images take at different wavelengths with Cassini's narrow-angle camera, from a distance of 19 million kilometers (11.8 million miles). The spacecraft was in almost a direct line between the Sun and Jupiter, so the solar illumination on Jupiter is almost full phase."[1]

"These color maps [second down on the right] of Jupiter were constructed from images taken by the narrow-angle camera onboard NASA's Cassini spacecraft on Dec. 11 and 12, 2000, as the spacecraft neared Jupiter during its flyby of the giant planet. Cassini was on its way to Saturn. They are the most detailed global color maps of Jupiter ever produced. The smallest visible features are about 120 kilometers (75 miles) across."[2]

"The maps are composed of 36 images: a pair of images covering Jupiter's northern and southern hemispheres was acquired in two colors every hour for nine hours as Jupiter rotated beneath the spacecraft. Although the raw images are in just two colors, 750 nanometers (near-infrared) and 451 nanometers (blue), the map's colors are close to those the human eye would see when gazing at Jupiter."[2]

"The maps show a variety of colorful cloud features, including parallel reddish-brown and white bands, the Great Red Spot, multi-lobed chaotic regions, white ovals and many small vortices. Many clouds appear in streaks and waves due to continual stretching and folding by Jupiter's winds and turbulence. The bluish-gray features along the north edge of the central bright band are equatorial "hot spots," meteorological systems such as the one entered by NASA's Galileo probe. Small bright spots within the orange band north of the equator are lightning-bearing thunderstorms. The polar regions are less clearly visible because Cassini viewed them at an angle and through thicker atmospheric haze (such as the whitish material in the south polar map) [third down on the right]."[2]

"This image [on the left] shows Jupiter's south pole, as seen by NASA's Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). The oval features are cyclones, up to 600 miles (1,000 kilometers) in diameter. Multiple images taken with the JunoCam instrument on three separate orbits were combined to show all areas in daylight, enhanced color, and stereographic projection."[3]

References[edit]

  1. 1.0 1.1 1.2 1.3 Sue Lavoie (13 December 2000). PIA02856: High Latitude Mottling on Jupiter. Pasadena, California USA: NASA/JPL. Retrieved 2017-02-12.
  2. 2.0 2.1 2.2 Sue Lavoie (27 March 2006). PIA07783: Cassini's Best Maps of Jupiter (North Polar Map). PIA07783: Cassini's Best Maps of Jupiter (North Polar Map): NASA/JPL. Retrieved 2017-02-12.
  3. Betsy Asher Hall and Gervasio Robles (25 May 2017). PIA21641: Southern Storms. Pasadena, California USA: NASA/JPL. Retrieved 2017-07-10.