Portal:Jupiter/Theory/2
Planetary sciences
[edit | edit source]The image at right represents "[t]he Jovian magnetosphere [magnetic field lines in blue], including the Io flux tube [in green], Jovian aurorae, the sodium cloud [in yellow], and sulfur torus [in red]."[1]
"Io may be considered to be a unipolar generator which develops an emf [electromotive force] of 7 x 105 volts across its radial diameter (as seen from a coordinate frame fixed to Jupiter)."[2]
"This voltage difference is transmitted along the magnetic flux tube which passes through Io. ... The current [in the flux tube] must be carried by keV electrons which are electrostatically accelerated at Io and at the top of Jupiter's ionosphere."[2]
"Io's high density (4.1 g cm-3) suggests a silicate composition. A reasonable guess for its electrical conductivity might be the conductivity of the Earth's upper mantle, 5 x 10-5 ohm-1 cm-1 (Bullard 1967)."[2]
As "a conducting body [transverses] a magnetic field [it] produces an induced electric field. ... The Jupiter-Io system ... operates as a unipolar inductor" ... Such unipolar inductors may be driven by electrical power, develop hotspots, and the "source of heating [may be] sufficient to account for the observed X-ray luminosity".[3]
"The electrical surroundings of Io provide another energy source which has been estimated to be comparable with that of the [gravitational] tides (7). A current of 5 x 106 A is ... shunted across flux tubes of the Jovian field by the presence of Io (7-9)."[4]
"[W]hen the currents [through Io] are large enough to cause ohmic heating ... currents ... contract down to narrow paths which can be kept hot, and along which the conductivity is high. Tidal heating [ensures] that the interior of Io has a very low eletrical resistance, causing a negligible extra amount of heat to be deposited by this current. ... [T]he outermost layers, kept cool by radiation into space [present] a large resistance and [result in] a concentration of the current into hotspots ... rock resistivity [and] contact resistance ... contribute to generate high temperatures on the surface. [These are the] conditions of electric arcs [that can produce] temperatures up to ionization levels ... several thousand kelvins".[4]
"[T]he outbursts ... seen [on the surface may also be] the result of the large current ... flowing in and out of the domain of Io ... Most current spots are likely to be volcanic calderas, either provided by tectonic events within Io or generated by the current heating itself. ... [A]s in any electric arc, very high temperatures are generated, and the locally evaporated materials ... are ... turned into gas hot enough to expand at a speed of 1 km/s."[4]
References
[edit | edit source]- ↑ John Spencer (November 2000). John Spencer's Astronomical Visualizations. Boulder, Colorado USA: University of Colorado. http://www.boulder.swri.edu/~spencer/digipics.html. Retrieved 2013-04-05.
- ↑ 2.0 2.1 2.2 Peter Goldreich and Donald Lynden-Bell (April 1969). "Io, a jovian unipolar inductor". The Astrophysical Journal 156 (04): 59-78. doi:10.1086/149947.
- ↑ Kinwah Wu, Mark Cropper, Gavin Ramsay, and Kazuhiro Sekiguchi (March 2002). "An electrically powered binary star?". Monthly Notices of the Royal Astronomical Society 321 (1): 221-7. doi:10.1046/j.1365-8711.2002.05190.x.
- ↑ 4.0 4.1 4.2 Thomas Gold (November 1979). "Electrical Origin of the Outbursts on Io". Science 206 (4422): 1071-3. doi:10.1126/science.206.4422.1071.