Physics equations/22-Magnetism/Q:AmpereLawCALC/More practice

From Wikiversity
Jump to navigation Jump to search

pe22AmpereLawCalc B[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 52A passes along the z-axis. Use symmetry to find the integral, , from the point (0,7.5) to the point (7.5,0).

a) 1.19E+01 amps
b) 1.30E+01 amps
c) 1.43E+01 amps
d) 1.56E+01 amps
e) 1.71E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 96A passes along the z-axis. Use symmetry to find the integral, , from the point (-6.6, 6.6) to the point (6.6, 6.6).

a) 1.82E+01 amps
b) 2.00E+01 amps
c) 2.19E+01 amps
d) 2.40E+01 amps
e) 2.63E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 33A passes along the z-axis. Use symmetry to find the integral, , from the point (0,9.5) to the point (9.5,9.5).

a) 3.43E+00 amps
b) 3.76E+00 amps
c) 4.13E+00 amps
d) 4.52E+00 amps
e) 4.96E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 94A passes along the z-axis. Use symmetry to find the integral, , from (-∞,6.2) to (+,6.2).

a) 3.91E+01 amps
b) 4.29E+01 amps
c) 4.70E+01 amps
d) 5.15E+01 amps
e) 5.65E+01 amps

pe22AmpereLawCalc C[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 78A passes along the z-axis. Use symmetry to find the integral, , from the point (0,4.6) to the point (4.6,0).

a) 1.62E+01 amps
b) 1.78E+01 amps
c) 1.95E+01 amps
d) 2.14E+01 amps
e) 2.34E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 91A passes along the z-axis. Use symmetry to find the integral, , from the point (-9.6, 9.6) to the point (9.6, 9.6).

a) 1.73E+01 amps
b) 1.89E+01 amps
c) 2.07E+01 amps
d) 2.28E+01 amps
e) 2.49E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 37A passes along the z-axis. Use symmetry to find the integral, , from the point (0,9) to the point (9,9).

a) 4.22E+00 amps
b) 4.63E+00 amps
c) 5.07E+00 amps
d) 5.56E+00 amps
e) 6.10E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 93A passes along the z-axis. Use symmetry to find the integral, , from (-∞,4.1) to (+,4.1).

a) 3.53E+01 amps
b) 3.87E+01 amps
c) 4.24E+01 amps
d) 4.65E+01 amps
e) 5.10E+01 amps


pe22AmpereLawCalc D[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 83A passes along the z-axis. Use symmetry to find the integral, , from the point (0,7.4) to the point (7.4,0).

a) 1.89E+01 amps
b) 2.08E+01 amps
c) 2.28E+01 amps
d) 2.49E+01 amps
e) 2.74E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 74A passes along the z-axis. Use symmetry to find the integral, , from the point (-5.7, 5.7) to the point (5.7, 5.7).

a) 1.54E+01 amps
b) 1.69E+01 amps
c) 1.85E+01 amps
d) 2.03E+01 amps
e) 2.22E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 88A passes along the z-axis. Use symmetry to find the integral, , from the point (0,6.6) to the point (6.6,6.6).

a) 9.15E+00 amps
b) 1.00E+01 amps
c) 1.10E+01 amps
d) 1.21E+01 amps
e) 1.32E+01 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 74A passes along the z-axis. Use symmetry to find the integral, , from (-∞,9) to (+,9).

a) 3.08E+01 amps
b) 3.37E+01 amps
c) 3.70E+01 amps
d) 4.06E+01 amps
e) 4.45E+01 amps

pe22AmpereLawCalc E[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 37A passes along the z-axis. Use symmetry to find the integral, , from the point (0,8.4) to the point (8.4,0).

a) 8.44E+00 amps
b) 9.25E+00 amps
c) 1.01E+01 amps
d) 1.11E+01 amps
e) 1.22E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 33A passes along the z-axis. Use symmetry to find the integral, , from the point (-6.6, 6.6) to the point (6.6, 6.6).

a) 5.71E+00 amps
b) 6.26E+00 amps
c) 6.86E+00 amps
d) 7.52E+00 amps
e) 8.25E+00 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 33A passes along the z-axis. Use symmetry to find the integral, , from the point (0,9.8) to the point (9.8,9.8).

a) 3.76E+00 amps
b) 4.13E+00 amps
c) 4.52E+00 amps
d) 4.96E+00 amps
e) 5.44E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 67A passes along the z-axis. Use symmetry to find the integral, , from (-∞,9.4) to (+,9.4).

a) 2.32E+01 amps
b) 2.54E+01 amps
c) 2.79E+01 amps
d) 3.06E+01 amps
e) 3.35E+01 amps

pe22AmpereLawCalc F[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 92A passes along the z-axis. Use symmetry to find the integral, , from the point (0,6.4) to the point (6.4,0).

a) 2.10E+01 amps
b) 2.30E+01 amps
c) 2.52E+01 amps
d) 2.77E+01 amps
e) 3.03E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 74A passes along the z-axis. Use symmetry to find the integral, , from the point (-7.4, 7.4) to the point (7.4, 7.4).

a) 1.69E+01 amps
b) 1.85E+01 amps
c) 2.03E+01 amps
d) 2.22E+01 amps
e) 2.44E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 92A passes along the z-axis. Use symmetry to find the integral, , from the point (0,5.3) to the point (5.3,5.3).

a) 8.72E+00 amps
b) 9.57E+00 amps
c) 1.05E+01 amps
d) 1.15E+01 amps
e) 1.26E+01 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 31A passes along the z-axis. Use symmetry to find the integral, , from (-∞,9.2) to (+,9.2).

a) 1.41E+01 amps
b) 1.55E+01 amps
c) 1.70E+01 amps
d) 1.86E+01 amps
e) 2.04E+01 amps

pe22AmpereLawCalc G[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 87A passes along the z-axis. Use symmetry to find the integral, , from the point (0,9.3) to the point (9.3,0).

a) 2.18E+01 amps
b) 2.38E+01 amps
c) 2.61E+01 amps
d) 2.87E+01 amps
e) 3.14E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 96A passes along the z-axis. Use symmetry to find the integral, , from the point (-6.4, 6.4) to the point (6.4, 6.4).

a) 2.00E+01 amps
b) 2.19E+01 amps
c) 2.40E+01 amps
d) 2.63E+01 amps
e) 2.89E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 86A passes along the z-axis. Use symmetry to find the integral, , from the point (0,5) to the point (5,5).

a) 7.44E+00 amps
b) 8.15E+00 amps
c) 8.94E+00 amps
d) 9.80E+00 amps
e) 1.08E+01 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 74A passes along the z-axis. Use symmetry to find the integral, , from (-∞,8.2) to (+,8.2).

a) 3.37E+01 amps
b) 3.70E+01 amps
c) 4.06E+01 amps
d) 4.45E+01 amps
e) 4.88E+01 amps

pe22AmpereLawCalc H[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 47A passes along the z-axis. Use symmetry to find the integral, , from the point (0,9) to the point (9,0).

a) 8.91E+00 amps
b) 9.77E+00 amps
c) 1.07E+01 amps
d) 1.18E+01 amps
e) 1.29E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 65A passes along the z-axis. Use symmetry to find the integral, , from the point (-4.9, 4.9) to the point (4.9, 4.9).

a) 1.23E+01 amps
b) 1.35E+01 amps
c) 1.48E+01 amps
d) 1.63E+01 amps
e) 1.78E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 46A passes along the z-axis. Use symmetry to find the integral, , from the point (0,7.9) to the point (7.9,7.9).

a) 5.24E+00 amps
b) 5.75E+00 amps
c) 6.30E+00 amps
d) 6.91E+00 amps
e) 7.58E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 69A passes along the z-axis. Use symmetry to find the integral, , from (-∞,5.8) to (+,5.8).

a) 2.87E+01 amps
b) 3.15E+01 amps
c) 3.45E+01 amps
d) 3.78E+01 amps
e) 4.15E+01 amps

pe22AmpereLawCalc I[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 55A passes along the z-axis. Use symmetry to find the integral, , from the point (0,8.7) to the point (8.7,0).

a) 1.38E+01 amps
b) 1.51E+01 amps
c) 1.65E+01 amps
d) 1.81E+01 amps
e) 1.99E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 40A passes along the z-axis. Use symmetry to find the integral, , from the point (-9.4, 9.4) to the point (9.4, 9.4).

a) 7.59E+00 amps
b) 8.32E+00 amps
c) 9.12E+00 amps
d) 1.00E+01 amps
e) 1.10E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 50A passes along the z-axis. Use symmetry to find the integral, , from the point (0,7) to the point (7,7).

a) 6.25E+00 amps
b) 6.85E+00 amps
c) 7.51E+00 amps
d) 8.24E+00 amps
e) 9.03E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 85A passes along the z-axis. Use symmetry to find the integral, , from (-∞,8) to (+,8).

a) 2.94E+01 amps
b) 3.22E+01 amps
c) 3.53E+01 amps
d) 3.88E+01 amps
e) 4.25E+01 amps

pe22AmpereLawCalc J[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 92A passes along the z-axis. Use symmetry to find the integral, , from the point (0,7.1) to the point (7.1,0).

a) 2.30E+01 amps
b) 2.52E+01 amps
c) 2.77E+01 amps
d) 3.03E+01 amps
e) 3.32E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 77A passes along the z-axis. Use symmetry to find the integral, , from the point (-9.8, 9.8) to the point (9.8, 9.8).

a) 1.60E+01 amps
b) 1.76E+01 amps
c) 1.93E+01 amps
d) 2.11E+01 amps
e) 2.31E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 39A passes along the z-axis. Use symmetry to find the integral, , from the point (0,8.5) to the point (8.5,8.5).

a) 4.88E+00 amps
b) 5.35E+00 amps
c) 5.86E+00 amps
d) 6.43E+00 amps
e) 7.05E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 88A passes along the z-axis. Use symmetry to find the integral, , from (-∞,8.7) to (+,8.7).

a) 4.01E+01 amps
b) 4.40E+01 amps
c) 4.82E+01 amps
d) 5.29E+01 amps
e) 5.80E+01 amps

pe22AmpereLawCalc K[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 40A passes along the z-axis. Use symmetry to find the integral, , from the point (0,6.7) to the point (6.7,0).

a) 8.32E+00 amps
b) 9.12E+00 amps
c) 1.00E+01 amps
d) 1.10E+01 amps
e) 1.20E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 70A passes along the z-axis. Use symmetry to find the integral, , from the point (-8.7, 8.7) to the point (8.7, 8.7).

a) 1.21E+01 amps
b) 1.33E+01 amps
c) 1.46E+01 amps
d) 1.60E+01 amps
e) 1.75E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 59A passes along the z-axis. Use symmetry to find the integral, , from the point (0,7.2) to the point (7.2,7.2).

a) 7.38E+00 amps
b) 8.09E+00 amps
c) 8.87E+00 amps
d) 9.72E+00 amps
e) 1.07E+01 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 94A passes along the z-axis. Use symmetry to find the integral, , from (-∞,9.4) to (+,9.4).

a) 3.25E+01 amps
b) 3.57E+01 amps
c) 3.91E+01 amps
d) 4.29E+01 amps
e) 4.70E+01 amps

pe22AmpereLawCalc L[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 54A passes along the z-axis. Use symmetry to find the integral, , from the point (0,5.4) to the point (5.4,0).

a) 9.34E+00 amps
b) 1.02E+01 amps
c) 1.12E+01 amps
d) 1.23E+01 amps
e) 1.35E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 87A passes along the z-axis. Use symmetry to find the integral, , from the point (-6.1, 6.1) to the point (6.1, 6.1).

a) 1.50E+01 amps
b) 1.65E+01 amps
c) 1.81E+01 amps
d) 1.98E+01 amps
e) 2.18E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 42A passes along the z-axis. Use symmetry to find the integral, , from the point (0,4.2) to the point (4.2,4.2).

a) 3.98E+00 amps
b) 4.37E+00 amps
c) 4.79E+00 amps
d) 5.25E+00 amps
e) 5.76E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 96A passes along the z-axis. Use symmetry to find the integral, , from (-∞,8.1) to (+,8.1).

a) 3.32E+01 amps
b) 3.64E+01 amps
c) 3.99E+01 amps
d) 4.38E+01 amps
e) 4.80E+01 amps

pe22AmpereLawCalc M[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 48A passes along the z-axis. Use symmetry to find the integral, , from the point (0,9.3) to the point (9.3,0).

a) 9.98E+00 amps
b) 1.09E+01 amps
c) 1.20E+01 amps
d) 1.32E+01 amps
e) 1.44E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 94A passes along the z-axis. Use symmetry to find the integral, , from the point (-5.8, 5.8) to the point (5.8, 5.8).

a) 1.78E+01 amps
b) 1.95E+01 amps
c) 2.14E+01 amps
d) 2.35E+01 amps
e) 2.58E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 36A passes along the z-axis. Use symmetry to find the integral, , from the point (0,8.6) to the point (8.6,8.6).

a) 4.50E+00 amps
b) 4.93E+00 amps
c) 5.41E+00 amps
d) 5.93E+00 amps
e) 6.50E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 36A passes along the z-axis. Use symmetry to find the integral, , from (-∞,8.3) to (+,8.3).

a) 1.50E+01 amps
b) 1.64E+01 amps
c) 1.80E+01 amps
d) 1.97E+01 amps
e) 2.16E+01 amps

pe22AmpereLawCalc N[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 74A passes along the z-axis. Use symmetry to find the integral, , from the point (0,4.1) to the point (4.1,0).

a) 1.28E+01 amps
b) 1.40E+01 amps
c) 1.54E+01 amps
d) 1.69E+01 amps
e) 1.85E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 63A passes along the z-axis. Use symmetry to find the integral, , from the point (-9.3, 9.3) to the point (9.3, 9.3).

a) 1.19E+01 amps
b) 1.31E+01 amps
c) 1.44E+01 amps
d) 1.58E+01 amps
e) 1.73E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 38A passes along the z-axis. Use symmetry to find the integral, , from the point (0,6.7) to the point (6.7,6.7).

a) 4.33E+00 amps
b) 4.75E+00 amps
c) 5.21E+00 amps
d) 5.71E+00 amps
e) 6.26E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 76A passes along the z-axis. Use symmetry to find the integral, , from (-∞,5.8) to (+,5.8).

a) 3.16E+01 amps
b) 3.47E+01 amps
c) 3.80E+01 amps
d) 4.17E+01 amps
e) 4.57E+01 amps

pe22AmpereLawCalc O[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 91A passes along the z-axis. Use symmetry to find the integral, , from the point (0,7.3) to the point (7.3,0).

a) 2.28E+01 amps
b) 2.49E+01 amps
c) 2.74E+01 amps
d) 3.00E+01 amps
e) 3.29E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 82A passes along the z-axis. Use symmetry to find the integral, , from the point (-9.3, 9.3) to the point (9.3, 9.3).

a) 2.05E+01 amps
b) 2.25E+01 amps
c) 2.46E+01 amps
d) 2.70E+01 amps
e) 2.96E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 89A passes along the z-axis. Use symmetry to find the integral, , from the point (0,4.8) to the point (4.8,4.8).

a) 9.25E+00 amps
b) 1.01E+01 amps
c) 1.11E+01 amps
d) 1.22E+01 amps
e) 1.34E+01 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 44A passes along the z-axis. Use symmetry to find the integral, , from (-∞,5) to (+,5).

a) 1.67E+01 amps
b) 1.83E+01 amps
c) 2.01E+01 amps
d) 2.20E+01 amps
e) 2.41E+01 amps

pe22AmpereLawCalc P[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 94A passes along the z-axis. Use symmetry to find the integral, , from the point (0,8.4) to the point (8.4,0).

a) 1.63E+01 amps
b) 1.78E+01 amps
c) 1.95E+01 amps
d) 2.14E+01 amps
e) 2.35E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 51A passes along the z-axis. Use symmetry to find the integral, , from the point (-7, 7) to the point (7, 7).

a) 9.67E+00 amps
b) 1.06E+01 amps
c) 1.16E+01 amps
d) 1.28E+01 amps
e) 1.40E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 48A passes along the z-axis. Use symmetry to find the integral, , from the point (0,8.4) to the point (8.4,8.4).

a) 5.47E+00 amps
b) 6.00E+00 amps
c) 6.58E+00 amps
d) 7.21E+00 amps
e) 7.91E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 39A passes along the z-axis. Use symmetry to find the integral, , from (-∞,8.5) to (+,8.5).

a) 1.62E+01 amps
b) 1.78E+01 amps
c) 1.95E+01 amps
d) 2.14E+01 amps
e) 2.34E+01 amps

pe22AmpereLawCalc Q[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 63A passes along the z-axis. Use symmetry to find the integral, , from the point (0,4.6) to the point (4.6,0).

a) 1.31E+01 amps
b) 1.44E+01 amps
c) 1.58E+01 amps
d) 1.73E+01 amps
e) 1.89E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 88A passes along the z-axis. Use symmetry to find the integral, , from the point (-8.1, 8.1) to the point (8.1, 8.1).

a) 2.01E+01 amps
b) 2.20E+01 amps
c) 2.41E+01 amps
d) 2.64E+01 amps
e) 2.90E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 49A passes along the z-axis. Use symmetry to find the integral, , from the point (0,9.8) to the point (9.8,9.8).

a) 6.13E+00 amps
b) 6.72E+00 amps
c) 7.36E+00 amps
d) 8.07E+00 amps
e) 8.85E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 43A passes along the z-axis. Use symmetry to find the integral, , from (-∞,5.8) to (+,5.8).

a) 1.63E+01 amps
b) 1.79E+01 amps
c) 1.96E+01 amps
d) 2.15E+01 amps
e) 2.36E+01 amps

pe22AmpereLawCalc R[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 43A passes along the z-axis. Use symmetry to find the integral, , from the point (0,7.1) to the point (7.1,0).

a) 8.15E+00 amps
b) 8.94E+00 amps
c) 9.80E+00 amps
d) 1.08E+01 amps
e) 1.18E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 51A passes along the z-axis. Use symmetry to find the integral, , from the point (-6.8, 6.8) to the point (6.8, 6.8).

a) 1.06E+01 amps
b) 1.16E+01 amps
c) 1.28E+01 amps
d) 1.40E+01 amps
e) 1.53E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 94A passes along the z-axis. Use symmetry to find the integral, , from the point (0,5.3) to the point (5.3,5.3).

a) 9.77E+00 amps
b) 1.07E+01 amps
c) 1.18E+01 amps
d) 1.29E+01 amps
e) 1.41E+01 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 31A passes along the z-axis. Use symmetry to find the integral, , from (-∞,9.4) to (+,9.4).

a) 1.55E+01 amps
b) 1.70E+01 amps
c) 1.86E+01 amps
d) 2.04E+01 amps
e) 2.24E+01 amps

pe22AmpereLawCalc S[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 99A passes along the z-axis. Use symmetry to find the integral, , from the point (0,6.2) to the point (6.2,0).

a) 2.48E+01 amps
b) 2.71E+01 amps
c) 2.98E+01 amps
d) 3.26E+01 amps
e) 3.58E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 74A passes along the z-axis. Use symmetry to find the integral, , from the point (-6.4, 6.4) to the point (6.4, 6.4).

a) 1.28E+01 amps
b) 1.40E+01 amps
c) 1.54E+01 amps
d) 1.69E+01 amps
e) 1.85E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 31A passes along the z-axis. Use symmetry to find the integral, , from the point (0,7.3) to the point (7.3,7.3).

a) 3.88E+00 amps
b) 4.25E+00 amps
c) 4.66E+00 amps
d) 5.11E+00 amps
e) 5.60E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 66A passes along the z-axis. Use symmetry to find the integral, , from (-∞,5.5) to (+,5.5).

a) 3.01E+01 amps
b) 3.30E+01 amps
c) 3.62E+01 amps
d) 3.97E+01 amps
e) 4.35E+01 amps

pe22AmpereLawCalc T[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 85A passes along the z-axis. Use symmetry to find the integral, , from the point (0,9.8) to the point (9.8,0).

a) 1.77E+01 amps
b) 1.94E+01 amps
c) 2.13E+01 amps
d) 2.33E+01 amps
e) 2.55E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 71A passes along the z-axis. Use symmetry to find the integral, , from the point (-8.6, 8.6) to the point (8.6, 8.6).

a) 1.62E+01 amps
b) 1.78E+01 amps
c) 1.95E+01 amps
d) 2.13E+01 amps
e) 2.34E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 81A passes along the z-axis. Use symmetry to find the integral, , from the point (0,7.9) to the point (7.9,7.9).

a) 7.68E+00 amps
b) 8.42E+00 amps
c) 9.23E+00 amps
d) 1.01E+01 amps
e) 1.11E+01 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 76A passes along the z-axis. Use symmetry to find the integral, , from (-∞,9.6) to (+,9.6).

a) 3.16E+01 amps
b) 3.47E+01 amps
c) 3.80E+01 amps
d) 4.17E+01 amps
e) 4.57E+01 amps

pe22AmpereLawCalc U[edit | edit source]

1 H is defined by, B=μ0H, where B is magnetic field. A current of 40A passes along the z-axis. Use symmetry to find the integral, , from the point (0,6.6) to the point (6.6,0).

a) 1.00E+01 amps
b) 1.10E+01 amps
c) 1.20E+01 amps
d) 1.32E+01 amps
e) 1.45E+01 amps

2 H is defined by, B=μ0H, where B is magnetic field. A current of 68A passes along the z-axis. Use symmetry to find the integral, , from the point (-6.4, 6.4) to the point (6.4, 6.4).

a) 1.55E+01 amps
b) 1.70E+01 amps
c) 1.86E+01 amps
d) 2.04E+01 amps
e) 2.24E+01 amps

3 H is defined by, B=μ0H, where B is magnetic field. A current of 58A passes along the z-axis. Use symmetry to find the integral, , from the point (0,8.5) to the point (8.5,8.5).

a) 6.03E+00 amps
b) 6.61E+00 amps
c) 7.25E+00 amps
d) 7.95E+00 amps
e) 8.72E+00 amps

4 H is defined by, B=μ0H, where B is magnetic field. A current of 67A passes along the z-axis. Use symmetry to find the integral, , from (-∞,6.9) to (+,6.9).

a) 2.54E+01 amps
b) 2.79E+01 amps
c) 3.06E+01 amps
d) 3.35E+01 amps
e) 3.67E+01 amps