Physics equations/20- Electric Current, Resistance, and Ohm's Law/Q:PowerDriftVelocity/testbank
Appearance
Study: http://en.wikiversity.org/wiki/Physics_equations/Sheet/All_chapters
a20ElectricCurrentResistivityOhm_PowerDriftVel_v1
[edit | edit source]
copies
|
---|
===2=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_1-->A 5.3 volt battery moves 11 Coulombs of charge in 2.1 hours. What is the power?} +a) 7.71 x 10<sup>-3</sup> W -b) 9.34 x 10<sup>-3</sup> W -c) 1.13 x 10<sup>-2</sup> W -d) 1.37 x 10<sup>-2</sup> W -e) 1.66 x 10<sup>-2</sup> W ===3=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_1-->A 1.4 volt battery moves 87 Coulombs of charge in 2 hours. What is the power?} -a) 7.85 x 10<sup>-3</sup> W -b) 9.51 x 10<sup>-3</sup> W -c) 1.15 x 10<sup>-2</sup> W -d) 1.4 x 10<sup>-2</sup> W +e) 1.69 x 10<sup>-2</sup> W ===4=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_1-->A 5.8 volt battery moves 95 Coulombs of charge in 0.3 hours. What is the power?} -a) 4.21 x 10<sup>-1</sup> W +b) 5.1 x 10<sup>-1</sup> W -c) 6.18 x 10<sup>-1</sup> W -d) 7.49 x 10<sup>-1</sup> W -e) 9.07 x 10<sup>-1</sup> W ===5=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_1-->A 4.7 volt battery moves 50 Coulombs of charge in 1.3 hours. What is the power?} -a) 4.14 x 10<sup>-2</sup> W +b) 5.02 x 10<sup>-2</sup> W -c) 6.08 x 10<sup>-2</sup> W -d) 7.37 x 10<sup>-2</sup> W -e) 8.93 x 10<sup>-2</sup> W ===6=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_1-->A 3.9 volt battery moves 90 Coulombs of charge in 2.2 hours. What is the power?} +a) 4.43 x 10<sup>-2</sup> W -b) 5.37 x 10<sup>-2</sup> W -c) 6.51 x 10<sup>-2</sup> W -d) 7.88 x 10<sup>-2</sup> W -e) 9.55 x 10<sup>-2</sup> W ===7=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_1-->A 5.1 volt battery moves 43 Coulombs of charge in 1.5 hours. What is the power?} +a) 4.06 x 10<sup>-2</sup> W -b) 4.92 x 10<sup>-2</sup> W -c) 5.96 x 10<sup>-2</sup> W -d) 7.22 x 10<sup>-2</sup> W -e) 8.75 x 10<sup>-2</sup> W ===8=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_1-->A 4 volt battery moves 19 Coulombs of charge in 1.3 hours. What is the power?} +a) 1.62 x 10<sup>-2</sup> W -b) 1.97 x 10<sup>-2</sup> W -c) 2.38 x 10<sup>-2</sup> W -d) 2.89 x 10<sup>-2</sup> W -e) 3.5 x 10<sup>-2</sup> W ===9=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_1-->A 3.1 volt battery moves 52 Coulombs of charge in 1.7 hours. What is the power?} -a) 1.79 x 10<sup>-2</sup> W -b) 2.17 x 10<sup>-2</sup> W +c) 2.63 x 10<sup>-2</sup> W -d) 3.19 x 10<sup>-2</sup> W -e) 3.87 x 10<sup>-2</sup> W ===10=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_1-->A 3.1 volt battery moves 40 Coulombs of charge in 0.9 hours. What is the power?} -a) 2.61 x 10<sup>-2</sup> W -b) 3.16 x 10<sup>-2</sup> W +c) 3.83 x 10<sup>-2</sup> W -d) 4.64 x 10<sup>-2</sup> W -e) 5.62 x 10<sup>-2</sup> W |
a20ElectricCurrentResistivityOhm_PowerDriftVel_v1
[edit | edit source]
copies
|
---|
===2=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_2-->The diameter of a copper wire is 1.7 mm, and it carries a current of 92 amps. What is the drift velocity if copper has a density of 8.8E3 kg/m<sup>3</sup> and an atomic mass of 63.54 g/mol? (1 mol = 6.02E23 atoms, and copper has one free electron per atom.)} -a) 2.07 x 10<sup>-3</sup>m/s -b) 2.5 x 10<sup>-3</sup>m/s +c) 3.03 x 10<sup>-3</sup>m/s -d) 3.67 x 10<sup>-3</sup>m/s -e) 4.45 x 10<sup>-3</sup>m/s ===3=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_2-->The diameter of a copper wire is 8.7 mm, and it carries a current of 22 amps. What is the drift velocity if copper has a density of 8.8E3 kg/m<sup>3</sup> and an atomic mass of 63.54 g/mol? (1 mol = 6.02E23 atoms, and copper has one free electron per atom.)} +a) 2.77 x 10<sup>-5</sup>m/s -b) 3.36 x 10<sup>-5</sup>m/s -c) 4.06 x 10<sup>-5</sup>m/s -d) 4.92 x 10<sup>-5</sup>m/s -e) 5.97 x 10<sup>-5</sup>m/s ===4=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_2-->The diameter of a copper wire is 3.6 mm, and it carries a current of 52 amps. What is the drift velocity if copper has a density of 8.8E3 kg/m<sup>3</sup> and an atomic mass of 63.54 g/mol? (1 mol = 6.02E23 atoms, and copper has one free electron per atom.)} +a) 3.82 x 10<sup>-4</sup>m/s -b) 4.63 x 10<sup>-4</sup>m/s -c) 5.61 x 10<sup>-4</sup>m/s -d) 6.8 x 10<sup>-4</sup>m/s -e) 8.24 x 10<sup>-4</sup>m/s ===5=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_2-->The diameter of a copper wire is 9.9 mm, and it carries a current of 41 amps. What is the drift velocity if copper has a density of 8.8E3 kg/m<sup>3</sup> and an atomic mass of 63.54 g/mol? (1 mol = 6.02E23 atoms, and copper has one free electron per atom.)} -a) 2.24 x 10<sup>-5</sup>m/s -b) 2.72 x 10<sup>-5</sup>m/s -c) 3.29 x 10<sup>-5</sup>m/s +d) 3.99 x 10<sup>-5</sup>m/s -e) 4.83 x 10<sup>-5</sup>m/s ===6=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_2-->The diameter of a copper wire is 9.2 mm, and it carries a current of 64 amps. What is the drift velocity if copper has a density of 8.8E3 kg/m<sup>3</sup> and an atomic mass of 63.54 g/mol? (1 mol = 6.02E23 atoms, and copper has one free electron per atom.)} -a) 4.91 x 10<sup>-5</sup>m/s -b) 5.95 x 10<sup>-5</sup>m/s +c) 7.2 x 10<sup>-5</sup>m/s -d) 8.73 x 10<sup>-5</sup>m/s -e) 1.06 x 10<sup>-4</sup>m/s ===7=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_2-->The diameter of a copper wire is 3.8 mm, and it carries a current of 88 amps. What is the drift velocity if copper has a density of 8.8E3 kg/m<sup>3</sup> and an atomic mass of 63.54 g/mol? (1 mol = 6.02E23 atoms, and copper has one free electron per atom.)} -a) 2.7 x 10<sup>-4</sup>m/s -b) 3.27 x 10<sup>-4</sup>m/s -c) 3.96 x 10<sup>-4</sup>m/s -d) 4.79 x 10<sup>-4</sup>m/s +e) 5.81 x 10<sup>-4</sup>m/s ===8=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_2-->The diameter of a copper wire is 1.9 mm, and it carries a current of 33 amps. What is the drift velocity if copper has a density of 8.8E3 kg/m<sup>3</sup> and an atomic mass of 63.54 g/mol? (1 mol = 6.02E23 atoms, and copper has one free electron per atom.)} -a) 5.93 x 10<sup>-4</sup>m/s -b) 7.19 x 10<sup>-4</sup>m/s +c) 8.71 x 10<sup>-4</sup>m/s -d) 1.06 x 10<sup>-3</sup>m/s -e) 1.28 x 10<sup>-3</sup>m/s ===9=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_2-->The diameter of a copper wire is 7.4 mm, and it carries a current of 38 amps. What is the drift velocity if copper has a density of 8.8E3 kg/m<sup>3</sup> and an atomic mass of 63.54 g/mol? (1 mol = 6.02E23 atoms, and copper has one free electron per atom.)} -a) 3.07 x 10<sup>-5</sup>m/s -b) 3.72 x 10<sup>-5</sup>m/s -c) 4.5 x 10<sup>-5</sup>m/s -d) 5.46 x 10<sup>-5</sup>m/s +e) 6.61 x 10<sup>-5</sup>m/s ===10=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_2-->The diameter of a copper wire is 8.3 mm, and it carries a current of 87 amps. What is the drift velocity if copper has a density of 8.8E3 kg/m<sup>3</sup> and an atomic mass of 63.54 g/mol? (1 mol = 6.02E23 atoms, and copper has one free electron per atom.)} -a) 6.77 x 10<sup>-5</sup>m/s -b) 8.2 x 10<sup>-5</sup>m/s -c) 9.93 x 10<sup>-5</sup>m/s +d) 1.2 x 10<sup>-4</sup>m/s -e) 1.46 x 10<sup>-4</sup>m/s |
a20ElectricCurrentResistivityOhm_PowerDriftVel_v1
[edit | edit source]
copies
|
---|
===2=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_3-->A 164 Watt DC motor draws 0.25 amps of current. What is effective resistance?} -a) 1.22 x 10<sup>3</sup> Ω -b) 1.48 x 10<sup>3</sup> Ω -c) 1.79 x 10<sup>3</sup> Ω -d) 2.17 x 10<sup>3</sup> Ω +e) 2.62 x 10<sup>3</sup> Ω ===3=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_3-->A 162 Watt DC motor draws 0.41 amps of current. What is effective resistance?} -a) 5.42 x 10<sup>2</sup> Ω -b) 6.57 x 10<sup>2</sup> Ω -c) 7.95 x 10<sup>2</sup> Ω +d) 9.64 x 10<sup>2</sup> Ω -e) 1.17 x 10<sup>3</sup> Ω ===4=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_3-->A 195 Watt DC motor draws 0.49 amps of current. What is effective resistance?} +a) 8.12 x 10<sup>2</sup> Ω -b) 9.84 x 10<sup>2</sup> Ω -c) 1.19 x 10<sup>3</sup> Ω -d) 1.44 x 10<sup>3</sup> Ω -e) 1.75 x 10<sup>3</sup> Ω ===5=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_3-->A 130 Watt DC motor draws 0.3 amps of current. What is effective resistance?} -a) 8.12 x 10<sup>2</sup> Ω -b) 9.84 x 10<sup>2</sup> Ω -c) 1.19 x 10<sup>3</sup> Ω +d) 1.44 x 10<sup>3</sup> Ω -e) 1.75 x 10<sup>3</sup> Ω ===6=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_3-->A 104 Watt DC motor draws 0.13 amps of current. What is effective resistance?} -a) 3.46 x 10<sup>3</sup> Ω -b) 4.19 x 10<sup>3</sup> Ω -c) 5.08 x 10<sup>3</sup> Ω +d) 6.15 x 10<sup>3</sup> Ω -e) 7.46 x 10<sup>3</sup> Ω ===7=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_3-->A 196 Watt DC motor draws 0.35 amps of current. What is effective resistance?} +a) 1.6 x 10<sup>3</sup> Ω -b) 1.94 x 10<sup>3</sup> Ω -c) 2.35 x 10<sup>3</sup> Ω -d) 2.85 x 10<sup>3</sup> Ω -e) 3.45 x 10<sup>3</sup> Ω ===8=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_3-->A 171 Watt DC motor draws 0.47 amps of current. What is effective resistance?} +a) 7.74 x 10<sup>2</sup> Ω -b) 9.38 x 10<sup>2</sup> Ω -c) 1.14 x 10<sup>3</sup> Ω -d) 1.38 x 10<sup>3</sup> Ω -e) 1.67 x 10<sup>3</sup> Ω ===9=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_3-->A 129 Watt DC motor draws 0.22 amps of current. What is effective resistance?} -a) 2.2 x 10<sup>3</sup> Ω +b) 2.67 x 10<sup>3</sup> Ω -c) 3.23 x 10<sup>3</sup> Ω -d) 3.91 x 10<sup>3</sup> Ω -e) 4.74 x 10<sup>3</sup> Ω ===10=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_3-->A 146 Watt DC motor draws 0.23 amps of current. What is effective resistance?} -a) 2.28 x 10<sup>3</sup> Ω +b) 2.76 x 10<sup>3</sup> Ω -c) 3.34 x 10<sup>3</sup> Ω -d) 4.05 x 10<sup>3</sup> Ω -e) 4.91 x 10<sup>3</sup> Ω |
a20ElectricCurrentResistivityOhm_PowerDriftVel_v1
[edit | edit source]
copies
|
---|
===2=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_4-->A power supply delivers 149 watts of power to a 153 ohm resistor. What was the applied voltage?} -a) 8.49 x 10<sup>1</sup> volts -b) 1.03 x 10<sup>2</sup> volts -c) 1.25 x 10<sup>2</sup> volts +d) 1.51 x 10<sup>2</sup> volts -e) 1.83 x 10<sup>2</sup> volts ===3=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_4-->A power supply delivers 101 watts of power to a 219 ohm resistor. What was the applied voltage?} +a) 1.49 x 10<sup>2</sup> volts -b) 1.8 x 10<sup>2</sup> volts -c) 2.18 x 10<sup>2</sup> volts -d) 2.64 x 10<sup>2</sup> volts -e) 3.2 x 10<sup>2</sup> volts ===4=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_4-->A power supply delivers 145 watts of power to a 132 ohm resistor. What was the applied voltage?} -a) 6.42 x 10<sup>1</sup> volts -b) 7.78 x 10<sup>1</sup> volts -c) 9.43 x 10<sup>1</sup> volts -d) 1.14 x 10<sup>2</sup> volts +e) 1.38 x 10<sup>2</sup> volts ===5=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_4-->A power supply delivers 145 watts of power to a 244 ohm resistor. What was the applied voltage?} +a) 1.88 x 10<sup>2</sup> volts -b) 2.28 x 10<sup>2</sup> volts -c) 2.76 x 10<sup>2</sup> volts -d) 3.34 x 10<sup>2</sup> volts -e) 4.05 x 10<sup>2</sup> volts ===6=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_4-->A power supply delivers 138 watts of power to a 206 ohm resistor. What was the applied voltage?} -a) 1.39 x 10<sup>2</sup> volts +b) 1.69 x 10<sup>2</sup> volts -c) 2.04 x 10<sup>2</sup> volts -d) 2.47 x 10<sup>2</sup> volts -e) 3 x 10<sup>2</sup> volts ===7=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_4-->A power supply delivers 187 watts of power to a 287 ohm resistor. What was the applied voltage?} +a) 2.32 x 10<sup>2</sup> volts -b) 2.81 x 10<sup>2</sup> volts -c) 3.4 x 10<sup>2</sup> volts -d) 4.12 x 10<sup>2</sup> volts -e) 4.99 x 10<sup>2</sup> volts ===8=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_4-->A power supply delivers 169 watts of power to a 219 ohm resistor. What was the applied voltage?} -a) 8.93 x 10<sup>1</sup> volts -b) 1.08 x 10<sup>2</sup> volts -c) 1.31 x 10<sup>2</sup> volts -d) 1.59 x 10<sup>2</sup> volts +e) 1.92 x 10<sup>2</sup> volts ===9=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_4-->A power supply delivers 110 watts of power to a 299 ohm resistor. What was the applied voltage?} -a) 8.42 x 10<sup>1</sup> volts -b) 1.02 x 10<sup>2</sup> volts -c) 1.24 x 10<sup>2</sup> volts -d) 1.5 x 10<sup>2</sup> volts +e) 1.81 x 10<sup>2</sup> volts ===10=== {<!--a20ElectricCurrentResistivityOhm_PowerDriftVel_4-->A power supply delivers 114 watts of power to a 294 ohm resistor. What was the applied voltage?} -a) 1.25 x 10<sup>2</sup> volts -b) 1.51 x 10<sup>2</sup> volts +c) 1.83 x 10<sup>2</sup> volts -d) 2.22 x 10<sup>2</sup> volts -e) 2.69 x 10<sup>2</sup> volts |