Physics Formulae/Equations for Properties of Matter

Lead Article: Tables of Physics Formulae

This article is a summary of the laws, principles, defining quantities, and useful formulae in the analysis of Equations for Properties of Matter.

Friction

 Normal Force $f_{n}=\mathbf {f} \cdot \mathbf {n} \,\!$ Static Friction, lies tangent to the surface $f\leqslant \mu _{s}f_{n}\,\!$ Kinetic Friction, lies tangent to the surface $f=\mu _{k}f_{n}\,\!$ Drag Force, tangent to the path $f=\mu _{d}\rho av^{2}/2\,\!$ Terminal Velocity $v_{t}={\sqrt {\frac {2fg}{\mu _{d}\rho A}}}\,\!$ Energy dissipation due to Friction (sound, heat etc) $\Delta E=f_{k}d\,\!$ Stress and strain

Quantity (Common Name/s) (Common) Symbol/s Definining Equation SI Units Dimension
General Stress $\sigma \,\!$ $\sigma =F/A\,\!$ F may be any force applied to area A

Pa = N m-2 [M] [T] [L]-1
General Strain $\epsilon \,\!$ $\epsilon =\Delta D/D\,\!$ D = dimension (length, area, volume)

$\Delta D\,\!$ = change in dimension

dimensionless dimensionless
General Modulus of Elasticity $E_{\mathrm {mod} }\,\!$ $E_{\mathrm {mod} }=\sigma /\epsilon \,\!$ Pa = N m-2 [M] [T] [L]-1
Yield Strength/ $\,\!$ Ultimate Strength $\,\!$ Young's Modulus $E,Y\,\!$ $Y={\frac {FL}{A\Delta L}}\,\!$ Pa = N m-2 [M] [T] [L]-1
Shear Modulus $G\,\!$ $G={\frac {FL}{A\Delta x}}\,\!$ Pa = N m-2 [M] [T] [L]-1
Bulk Modulus $B\,\!$ $B={\frac {P}{\Delta V/V}}\,\!$ Pa = N m-2 [M] [T] [L]-1

Fluid Dynamics

 density $\rho =\Delta m/\Delta V\,\!$ pressure $p=\Delta F/\Delta A\,\!$ pressure difference $\Delta p=\rho g\Delta y\,\!$ pressure at depth $p=p_{0}+\rho gh\,\!$ barometer versus manometer Pascal's principle Archimedes' Principle buoyant force $F_{b}=m_{f}g\,\!$ gravitational force when floating $F_{g}=F_{b}\,\!$ apparent weight $weight_{app}=weight-F_{b}\,\!$ ideal fluid equation of continuity $R_{V}=Av=\,\!$ constant Bernoulli's Equation $p+{\frac {\rho }{2}}v^{2}+\rho gh=\,\!$ constant