Physics/Essays/Fedosin/Maxwell-like gravitational equations
In weak gravitational field approximation, Maxwell-like gravitational equations are a set of four partial differential equations that describe the properties of two components of gravitational field and relate them to their sources, mass density and mass current density. These equations are presented in the same form as equations in gravitoelectromagnetism and Lorentz-invariant theory of gravitation. They are used here to show that gravitational waves determine the speed of gravity which is close to the speed of light just as speed of electromagnetic waves determine the speed of light.
History
[edit | edit source]Due to McDonald, [1] the first who used Maxwell equations to describe gravitation was Oliver Heaviside.[2] [3] The point is that in weak gravitational field standard theory of gravitation could be written in the form of Maxwell equations with two gravitational constants.[4] [5]
In 1984 Maxwell-like equations were considered in Wald book of general relativity.[6] Since the 90s this approach has been used by Sabbata,[7] [8] Lano, [9] Sergey Fedosin. [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]
The ways of experimental determination of gravitational waves properties are developed in papers of Raymond Y. Chiao. [36] [37] [38] [39] [40]
Maxwell-like equations can be found in many other recent works: [41] [42] [43] [44] [45] [46] [47] [48]
Field equations
[edit | edit source]Unlike electromagnetic wave representation used in Lorentz-invariant theory of gravitation (LITG), Maxwell-like equations are written in gravitational wave representation. Accordingly, instead of the speed of light, the speed of gravity appears in all expressions:
where:
- is gravitational field strength,
- is gravitational constant,
- is gravitational torsion field,
- – mass current density,
- – moving mass density,
- – velocity of mass current,
- – speed of gravity.
From these equations the wave equations are derived: [11]
These equations are the gravitational analogs to Maxwell's equations for electromagnetism.
Gravitational constants
[edit | edit source]Proceeding from the analogy of both gravitational and Maxwell's equations, the following values can be entered: as the gravitoelectric permittivity (like electric constant);
as the gravitomagnetic permeability (like vacuum permeability). If the speed of gravitation is equal to the speed of light, then [49] and
The gravitational characteristic impedance of free space for gravitational waves would then be defined as:
If then gravitational characteristic impedance of free space is equal to: [39]
- .
As in electromagnetism, the characteristic impedance of free space plays dominant role in all radiation processes. One example being, a comparison of radiation impedance of gravitational wave antennas to the value of characteristic impedance of free space in order to estimate the coupling efficiency of antennas to free space. The numerical value of characteristic impedance of free space is extremely small and therefore it is very difficult to make gravitational radiation receivers with appropriate impedance matching.
Applications
[edit | edit source]Wave equations in vacuum
[edit | edit source]The gravitational vacuum wave equation is a second-order partial differential equation that describes propagation of gravitational waves through vacuum in absence of matter. The homogeneous form of the equation, written in terms of either gravitational field strength or gravitational torsion field , has the form:
From these equations it follows that in gravitational wave representation a gravitational wave propagates with the speed , and in this representation all space-time measurements must be made using gravitational waves.
For waves in one direction the general solution of the gravitational wave equation is a linear superposition of flat waves of the form
and
for virtually any well-behaved functions and of dimensionless argument where
- is angular frequency (in radians per second),
- is wave vector (in radians per meter), and
Considering the following relationships between inductions and strengths of gravitational field and torsion field: [50]
where is gravitational displacement field, is torsion (gravitomagnetic) field strength,
we could obtain the following interconnected values:
This equation determines the wave impedance (gravitational characteristic impedance of free space) in a standard form similar to the case of electromagnetism:
In practice, without exception the total dipole gravitational radiation of each system of bodies, when viewed from infinity tends to zero, due to mutual compensation of radiations of individual bodies. As a result, the main components of gravitational radiation are quadrupole and higher harmonics. With this in mind, the wave equation in Lorentz-invariant theory of gravitation, calculated in quadrupole approximation, are sufficiently accurate approximations to results of general relativity and covariant theory of gravitation.
Gravitational LC circuit
[edit | edit source]As a model of LC circuit, consider the case of motion of an ideal liquid fluid in a closed pipe under influence of gravitational and other forces. This fluid plays the same role as electrons in a conductor or charged particles moving under influence of an electric field. Suppose that this circuit has a tubular coil through which passes a fluid, due to its rotation creates a torsion field in the space and passes portion of its energy to the field. The tubular coil is equivalent to a spiral inductance in an electric circuit. In another part of the circuit is a section that accumulates the fluid. For the possibility of fluid motion in two opposite directions in this circuit, on both sides of the section are pistons with springs. This allows for periodical conversion fluid motion energy into energy of compression springs, which is approximately equated to changes in gravitational energy of the fluid. The pistons with springs act like a capacitor in a circuit, and gravitational voltage is then equal to difference of gravitational potentials, and the gravitational mass current is equivalent to mass of liquid per unit time through a section of the pipe.
Gravitational voltage on gravitational inductance is:
Gravitational mass current through gravitational capacitance is:
Differentiating these equations with respect to the time variable, we obtain:
Considering the following relationships for gravitational voltages and currents:
we obtain differential equations for gravitational oscillations:
Furthermore, considering relationships between gravitational voltage and mass of the fluid:
and mass current with flux of torsion field:
the above oscillation equation for could be rewritten in the form:
This equation has the partial solution:
where
is the resonance frequency in absence of energy loss, and
then describes gravitational characteristic impedance of LC circuit, which is equal to the ratio of gravitational voltage amplitude to the mass current amplitude.
Gravitational induction
[edit | edit source]According to the second equation for gravitational fields, after a change in time of there appears a circular field (rotor) of , having the opportunity to lead matter in rotation: [10]
If the vector field crosses a certain area , then we can calculate the flux of this field through this area:
where – the normal vector to the element area .
Let's take the partial derivative in equation with respect to time with a minus sign and integrate over area taking into account equation :
This integration formula used the Stokes theorem, replacing integration of the rotor vector over area on integration of this vector over a closed circuit. On the right side of there is a term, equal to the work on transfer of a unit mass of matter on a closed loop , covering an area . By analogy with electromagnetism, this work could be called gravitomotive force. In the middle of there is the time derivative of flux . According to , gravitational induction occurs when the flux of fields through a certain area changes and is expressed in the occurrence of rotational forces acting on particles of matter.
See also
[edit | edit source]- Electrodynamics
- Lorentz-invariant theory of gravitation
- Gravitoelectromagnetism
- Speed of gravitation
- Gravitational characteristic impedance of free space
- Selfconsistent gravitational constants
- Gravitational induction
- Quantum Gravitational Resonator
- Theory of Informatons
References
[edit | edit source]- ↑ K.T. McDonald, Am. J. Phys. 65, 7 (1997) 591-2.
- ↑ O. Heaviside, Electromagnetic Theory (”The Electrician” Printing and Publishing Co., London, 1894) pp. 455-465.
- ↑ OLIVER HEAVISIDE. A GRAVITATIONAL AND ELECTROMAGNETIC ANALOGY, Part I, The Electrician, 31, 281-282 (1893).
- ↑ W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, MA, 1955), p. 168, 166.
- ↑ R. L. Forward, Proc. IRE 49, 892 (1961).
- ↑ R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984).
- ↑ V. de Sabbata and M. Gasperini, Introduction to Gravitation (World Scientific, Singapore,1985).
- ↑ V. de Sabbata and C.Sivaram, Spin and Torsion in Gravitation (World Scientific, Singapore,1994)
- ↑ R.P. Lano (1996-03-12). "Gravitational Meissner Effect". arXiv: hep-th 9603077. http://arxiv.org/PS_cache/hep-th/pdf/9603/9603077v1.pdf.
- ↑ 10.0 10.1 Fedosin S.G. Fizika i filosofiia podobiia: ot preonov do metagalaktik, Perm, (1999-06-09) 544 pp. ISBN 5-8131-0012-1.
- ↑ 11.0 11.1 Fedosin S.G. Electromagnetic and Gravitational Pictures of the World. Apeiron, Vol. 14, No. 4, pp. 385- 413 (2007). http://dx.doi.org/10.5281/zenodo.891124.
- ↑ Fedosin S.G. Mass, Momentum and Energy of Gravitational Field. // Journal of Vectorial Relativity, Vol. 3, No. 3, pp.30-35 (2008). http://dx.doi.org/10.5281/zenodo.890899
- ↑ Fedosin S.G. Model of Gravitational Interaction in the Concept of Gravitons. // Journal of Vectorial Relativity, Vol. 4, No. 1, pp.1-24 (2009). http://dx.doi.org/10.5281/zenodo.890886.
- ↑ Fedosin S.G. (2009), written at Perm, 844 pages, Tabl. 21, Pic. 41, Ref. 289., Fizicheskie teorii i beskonechnaia vlozhennost’ materii, ISBN 978-5-9901951-1-0. (in Russian).
- ↑ Fedosin S.G. The Principle of Least Action in Covariant Theory of Gravitation. Hadronic Journal, Vol. 35, No. 1, pp. 35-70 (2012). http://dx.doi.org/10.5281/zenodo.889804.
- ↑ Fedosin S.G. The Hamiltonian in Covariant Theory of Gravitation. Advances in Natural Science, Vol. 5, No. 4, pp. 55-75 (2012). http://dx.doi.org/10.3968%2Fj.ans.1715787020120504.2023.
- ↑ Fedosin S.G. 4/3 Problem for the Gravitational Field. Advances in Physics Theories and Applications, Vol. 23, pp. 19-25 (2013). http://dx.doi.org/10.5281/zenodo.889383.
- ↑ Fedosin S.G. The General Theory of Relativity, Metric Theory of Relativity and Covariant Theory of Gravitation. Axiomatization and Critical Analysis. International Journal of Theoretical and Applied Physics (IJTAP), Vol. 4, No. I , pp. 9-26 (2014). http://dx.doi.org/10.5281/zenodo.890781.
- ↑ Fedosin S.G. The Integral Energy-Momentum 4-Vector and Analysis of 4/3 Problem Based on the Pressure Field and Acceleration Field. American Journal of Modern Physics. Vol. 3, No. 4, pp. 152-167 (2014). http://dx.doi.org/10.11648/j.ajmp.20140304.12.
- ↑ Fedosin S.G. The Procedure of Finding the Stress-Energy Tensor and Equations of Vector Field of Any Form. Advanced Studies in Theoretical Physics, Vol. 8, No. 18, pp. 771-779 (2014). http://dx.doi.org/10.12988/astp.2014.47101.
- ↑ Fedosin S.G. Relativistic Energy and Mass in the Weak Field Limit. Jordan Journal of Physics. Vol. 8, No. 1, pp. 1-16 (2015). http://dx.doi.org/10.5281/zenodo.889210.
- ↑ Fedosin S.G. Four-Dimensional Equation of Motion for Viscous Compressible and Charged Fluid with Regard to the Acceleration Field, Pressure Field and Dissipation Field. International Journal of Thermodynamics. Vol. 18, No. 1, pp. 13-24 (2015). http://dx.doi.org/10.5541/ijot.5000034003.
- ↑ Fedosin S.G. About the cosmological constant, acceleration field, pressure field and energy. Jordan Journal of Physics. Vol. 9, No. 1, pp. 1-30 (2016). http://dx.doi.org/10.5281/zenodo.889304.
- ↑ Fedosin S.G. Estimation of the physical parameters of planets and stars in the gravitational equilibrium model. Canadian Journal of Physics, Vol. 94, No. 4, pp. 370-379 (2016). http://dx.doi.org/10.1139/cjp-2015-0593.
- ↑ Fedosin S.G. Two components of the macroscopic general field. Reports in Advances of Physical Sciences, Vol. 1, No. 2, 1750002, 9 pages (2017). http://dx.doi.org/10.1142/S2424942417500025.
- ↑ Fedosin S.G. The virial theorem and the kinetic energy of particles of a macroscopic system in the general field concept. Continuum Mechanics and Thermodynamics, Vol. 29, Issue 2, pp. 361-371 (2017). https://dx.doi.org/10.1007/s00161-016-0536-8.
- ↑ Fedosin S.G. Energy and metric gauging in the covariant theory of gravitation. Aksaray University Journal of Science and Engineering, Vol. 2, Issue 2, pp. 127-143 (2018). http://dx.doi.org/10.29002/asujse.433947.
- ↑ Fedosin S.G. The Gravitational Field in the Relativistic Uniform Model within the Framework of the Covariant Theory of Gravitation. International Letters of Chemistry, Physics and Astronomy, Vol. 78, pp. 39-50 (2018). http://dx.doi.org/10.18052/www.scipress.com/ILCPA.78.39.
- ↑ Fedosin S.G. The covariant additive integrals of motion in the theory of relativistic vector fields. Bulletin of Pure and Applied Sciences, Vol. 37 D (Physics), No. 2, pp. 64-87 (2018). http://dx.doi.org/10.5958/2320-3218.2018.00013.1.
- ↑ Fedosin S.G. The integral theorem of generalized virial in the relativistic uniform model. Continuum Mechanics and Thermodynamics, Vol. 31, Issue 3, pp. 627-638 (2019). http://dx.doi.org/10.1007/s00161-018-0715-x.
- ↑ Fedosin S.G. The generalized Poynting theorem for the general field and solution of the 4/3 problem. International Frontier Science Letters, Vol. 14, pp. 19-40 (2019). https://doi.org/10.18052/www.scipress.com/IFSL.14.19.
- ↑ Fedosin S.G. The Integral Theorem of the Field Energy. GAZI UNIVERSITY JOURNAL OF SCIENCE, Vol. 32, Issue 2, pp. 686-703 (2019). http://dx.doi.org/10.5281/zenodo.3252783.
- ↑ Fedosin S.G. The binding energy and the total energy of a macroscopic body in the relativistic uniform model. Middle East Journal of Science, Vol. 5, Issue 1, pp. 46-62 (2019). http://dx.doi.org/10.23884/mejs.2019.5.1.06.
- ↑ Fedosin S.G. Equations of Motion in the Theory of Relativistic Vector Fields. International Letters of Chemistry, Physics and Astronomy, Vol. 83, pp. 12-30 (2019). https://doi.org/10.18052/www.scipress.com/ILCPA.83.12.
- ↑ Fedosin S.G. The Mass Hierarchy in the Relativistic Uniform System. Bulletin of Pure and Applied Sciences, Vol. 38 D (Physics), No. 2, pp. 73-80 (2019). http://dx.doi.org/10.5958/2320-3218.2019.00012.5.
- ↑ Raymond Y. Chiao. "Conceptual tensions between quantum mechanics and general relativity: Are there experimental consequences, e.g., superconducting transducers between electromagnetic and gravitational radiation?" arXiv:gr-qc/0208024v3 (2002). [PDF
- ↑ R.Y. Chiao and W.J. Fitelson. Time and matter in the interaction between gravity and quantum fluids: are there macroscopic quantum transducers between gravitational and electromagnetic waves? In Proceedings of the “Time & Matter Conference” (2002 August 11-17; Venice, Italy), ed. I. Bigi and M. Faessler (Singapore: World Scientific, 2006), p. 85. arXiv: gr-qc/0303089. PDF
- ↑ R.Y. Chiao. Conceptual tensions between quantum mechanics and general relativity: are there experimental consequences? In Science and Ultimate Reality, ed. J.D. Barrow, P.C.W. Davies, and C.L. Harper, Jr. (Cambridge: Cambridge University Press, 2004), p. 254. arXiv:gr-qc/0303100.
- ↑ 39.0 39.1 Raymond Y. Chiao. "New directions for gravitational wave physics via “Millikan oil drops” arXiv:gr-qc/0610146v16 (2009). PDF
- ↑ Stephen Minter, Kirk Wegter-McNelly, and Raymond Chiao. Do Mirrors for Gravitational Waves Exist? arXiv:gr-qc/0903.0661v10 (2009). PDF
- ↑ Flanders W.D., Japaridze G.S. Photon deflection and precession of the periastron in terms of spatial gravitational fields. Class. Quant. Gravit. Vol. 21, pp. 1825-1831 (2004). https://doi.org/10.1088/0264-9381/21/7/007.
- ↑ Borodikhin V.N. Vector theory of gravity. Gravit. Cosmol. Vol. 17, pp. 161-165 (2011). https://doi.org/10.1134/S0202289311020071.
- ↑ Nyambuya G.G. Fundamental Physical Basis for Maxwell-Heaviside Gravitomagnetism. Journal of Modern Physics, Vol. 6, pp. 1207-1219 (2015). http://dx.doi.org/10.4236/jmp.2015.69125.
- ↑ Behera H., Barik N. Attractive Heaviside-Maxwellian (Vector) Gravity from Special Relativity and Quantum Field Theory. arXiv: 1709.06876v2. (2017).
- ↑ Behera H. Comments on gravitoelectromagnetism of Ummarino and Gallerati in “Superconductor in a weak static gravitational field” vs other versions. Eur. Phys. J. C. Vol. 77, Article number 822 (2017). https://doi.org/10.1140/epjc/s10052-017-5386-4.
- ↑ Ummarino G.A., Gallerati A. Superconductor in a weak static gravitational field. Eur. Phys. J. C. Vol. 77, Article number 549 (2017). https://doi.org/10.1140/epjc/s10052-017-5116-y.
- ↑ Antoine Acke. Gravitation explained by the Theory of Informatons. ((12) ELECTROMAGNETISM EXPLAINED BY THE THEORY OF INFORMATONS -version 2 | Antoine Acke - Academia.edu(2020).
- ↑ Timkov V.F., Timkov S.V., Zhukov V.A., Afanasiev K.E. The quantum of the gravitational field. The gravitational-electromagnetic resonance. Physical nature of the quantum of the gravitational field. Conference: Collection of scientific articles of the X-th International Scientific and Practical Conference "Technical Regulation, Metrology, Information and Transport Technologies", Odessa State Academy of Regulation and Quality, Odessa, 2020.At: Ukraine, Odessa, [1].
- ↑ Kiefer, C.; Weber, C. On the interaction of mesoscopic quantum systems with gravity. Annalen der Physik, 2005, Vol. 14, Issue 4, Pages 253 – 278.
- ↑ Sergey Fedosin. The physical theories and infinite hierarchical nesting of matter, Volume 2. – LAP LAMBERT Academic Publishing, pages: 420, ISBN-13: 978-3-659-71511-2. (2015).