Operator of proper-time-derivative

From Wikiversity
Jump to: navigation, search

Operator of proper-time-derivative is a differential operator and the relativistic generalization of material derivative (substantial derivative) in four-dimensional spacetime.

In coordinate notation, this operator is written as follows: [1]

,

where – the symbol of differential in curved spacetime, proper time, which is measured by a clock moving with test particle, 4-velocity of test particle or local volume of matter, covariant derivative.

In flat Minkowski spacetime operator of proper-time-derivative is simplified, since the covariant derivative transforms into 4-gradient (the operator of differentiation with partial derivatives with respect to coordinates):

.

To prove this expression it can be applied to an arbitrary 4-vector :

.

Above was used material derivative in operator equation for an arbitrary function :

,

where is the velocity of local volume of matter, nabla operator.

In turn, the material derivative follows from the representation of differential function of spatial coordinates and time:

.

Applications[edit]

Operator of proper-time-derivative is applied to different four-dimensional objects – to scalar functions, 4-vectors and 4-tensors. One exception is 4-position (4-radius), which in four-Cartesian coordinates has the form because 4-position is not a 4-vector in curved space-time, but its differential (displacement) is. Effect of the left side of operator of proper-time-derivative on the 4-position specifies the 4-velocity: , but the right side of the operator does not so: .

In covariant theory of gravitation operator of proper-time-derivative is used to determine the density of 4-force in curved spacetime:[2]

,

where is 4-vector momentum density of matter, – density of matter in its rest system, Christoffel symbol.

In general relativity freely falling body in a gravitational field moves along a geodesic, and four-acceleration of body in this case is equal to zero:[3]

.

Since interval , then equation of motion of the body along a geodesic in general relativity can be rewritten in equivalent form:

If, instead of the proper time to use a parameter , and equation of a curve set by the expression , then there is the operator of derivative on the parameter along the curve:[4]

.

See also[edit]

References[edit]

  1. Fedosin S.G. Fizicheskie teorii i beskonechnaia vlozhennost’ materii. – Perm, 2009-2011, 858 pages, Tabl. 21, Pic. 41, Ref. 293. ISBN 978-5-9901951-1-0. (in Russian).
  2. Fedosin S.G. The General Theory of Relativity, Metric Theory of Relativity and Covariant Theory of Gravitation: Axiomatization and Critical Analysis. International Journal of Theoretical and Applied Physics (IJTAP), ISSN: 2250-0634, Vol. 4, No. I (2014), pp. 9 – 26.
  3. Fock, V. A. (1964). "The Theory of Space, Time and Gravitation". Macmillan.
  4. Carroll, Sean M. (2004), Spacetime and Geometry, Addison Wesley, ISBN 0-8053-8732-3, http://spacetimeandgeometry.net 

External links[edit]