# OpenStax University Physics/Archived sample/T1V2

PhysicsCalc2152657831440

### PhysicsCalc2:T1:V2

PhysicsCalc2152657831440

1) A proton is accelerated (at rest) from a plate held at 333.6 volts to a plate at zero volts. What is the final speed?

a) 1.1 x 105 m/s.
b) 1.7 x 105 m/s.
c) 2.5 x 105 m/s.
d) 3.8 x 105 m/s.
e) 5.7 x 105 m/s.

2) A dipole at the origin consists of charge Q placed at x = 0.5a, and charge of -Q placed at x = -0.5a. The absolute value of the x component of the electric field at (x,y) =( 5a, 4a) is βkQ/a2, where β equals

a) 1.76 x 10-3 unit
b) 2.13 x 10-3 unit
c) 2.59 x 10-3 unit
d) 3.13 x 10-3 unit
e) 3.79 x 10-3 unit

3) A 1.3 Farad capacitor charged with 1.9 Coulombs. What is the energy stored in the capacitor if the plates are 0.3 mm apart?

a) 0.91 J.
b) 1.05 J.
c) 1.21 J.
d) 1.39 J.
e) 1.6 J.

4) A line of charge density λ situated on the y axis extends from y = 4 to y = 6. What is the y component of the electric field at the point (5, 1)?
$Answer$ (assuming ${\mathcal {B}}>{\mathcal {A}}$ ) $is:{\frac {1}{4\pi \epsilon _{0}}}\int _{\mathcal {A}}^{\mathcal {B}}{\frac {{\mathcal {C}}\;\lambda ds}{\left[{\mathcal {D}}^{2}+{\mathcal {E}}^{2}\right]^{\mathcal {F}}\;}}$ , where ${\mathcal {C}}=$ :

a) 5
b) 1−s
c) 5−s
d) s−1
e) s−4

5) A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as,
${\vec {\mathfrak {F}}}=(1.86+2.43z)\rho ^{2}{\hat {\rho }}+9.75z^{2}{\hat {z}}$ Let ${\hat {n}}$ be the outward unit normal to this cylinder and evaluate ,
$\left|\int _{top}{\vec {\mathfrak {F}}}\cdot {\hat {n}}dA\right|\,$ over the top surface of the cylinder.

a) 6.201E+02
b) 7.513E+02
c) 9.102E+02
d) 1.103E+03
e) 1.336E+03

6) How fast is a 2355 eV electron moving?

a) 1.9 x 107 m/s.
b) 2.9 x 107 m/s.
c) 4.3 x 107 m/s.
d) 6.5 x 107 m/s.
e) 9.7 x 107 m/s.

7) A 0.5 Farad capacitor charged with 1.3 Coulombs. What is the force between the plates if they are 0.7 mm apart?

a) 1826 N.
b) 2099 N.
c) 2414 N.
d) 2776 N.
e) 3193 N.

8) A dipole at the origin consists of charge Q placed at x = 0.5a, and charge of -Q placed at x = -0.5a. The absolute value of the y component of the electric field at (x,y) =( 1.1a, 1.2a) is βkQ/a2, where β equals

a) 2.86 x 10-1
b) 3.47 x 10-1
c) 4.2 x 10-1
d) 5.09 x 10-1
e) 6.17 x 10-1

9) A line of charge density λ situated on the x axis extends from x = 3 to x = 7. What is the x component of the electric field at the point (7, 8)?
$Answer$ (assuming ${\mathcal {B}}>{\mathcal {A}}$ ) $is:{\frac {1}{4\pi \epsilon _{0}}}\int _{\mathcal {A}}^{\mathcal {B}}{\frac {{\mathcal {C}}\;\lambda ds}{\left[{\mathcal {D}}^{2}+{\mathcal {E}}^{2}\right]^{\mathcal {F}}\;}}$ , where ${\mathcal {C}}=$ :

a) s−7
b) 8
c) s−3
d) 7−s
e) 3−s

10) Integrate the line integral of ${\vec {F}}=2xy{\hat {x}}+9.7x{\hat {y}}$ from the origin to the point at x = 2.8 and y = 3.2

a) 5.26E+01
b) 5.62E+01
c) 6.02E+01
d) 6.44E+01
e) 6.89E+01

11) A line of charge density λ situated on the y axis extends from y = 4 to y = 6. What is the y component of the electric field at the point (5, 1)?
$Answer$ (assuming ${\mathcal {B}}>{\mathcal {A}}$ ) $is:{\frac {1}{4\pi \epsilon _{0}}}\int _{\mathcal {A}}^{\mathcal {B}}{\frac {{\mathcal {C}}\;\lambda ds}{\left[{\mathcal {D}}^{2}+{\mathcal {E}}^{2}\right]^{\mathcal {F}}\;}}$ , where ${\mathcal {F}}=$ :

a) 2
b) 1/2
c) 3
d) 2/3
e) 3/2

12) A cylinder of radius, r=3, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as,
${\vec {\mathfrak {F}}}=(2.37+2.6z)\rho ^{2}{\hat {\rho }}+8.84z^{3}{\hat {z}}$ Let ${\hat {n}}$ be the outward unit normal to this cylinder and evaluate ,
$\left|\int _{side}{\vec {\mathfrak {F}}}\cdot {\hat {n}}dA\right|\,$ over the curved side surface of the cylinder.

a) 7.465E+02
b) 9.044E+02
c) 1.096E+03
d) 1.327E+03
e) 1.608E+03