Euler-Bernoulli beam
|



Strain-Displacement Relations[edit | edit source]


The displacements

The derivatives

The von Karman strains
![{\displaystyle {\begin{aligned}\varepsilon _{11}&={\cfrac {du_{0}}{dx_{1}}}-x_{3}{\cfrac {d^{2}w_{0}}{dx_{1}^{2}}}+{\frac {1}{2}}\left[\left({\cfrac {du_{0}}{dx_{1}}}-x_{3}{\cfrac {d^{2}w_{0}}{dx_{1}^{2}}}\right)^{2}+\left({\cfrac {dw_{0}}{dx_{1}}}\right)^{2}\right]\\\varepsilon _{22}&=0\\\varepsilon _{33}&={\frac {1}{2}}\left({\cfrac {dw_{0}}{dx_{1}}}\right)^{2}\\\varepsilon _{23}&=0\\\varepsilon _{31}&={\frac {1}{2}}\left({\cfrac {dw_{0}}{dx_{1}}}-{\cfrac {dw_{0}}{dx_{1}}}\right)-{\frac {1}{2}}\left[\left({\cfrac {du_{0}}{dx_{1}}}-x_{3}{\cfrac {d^{2}w_{0}}{dx_{1}^{2}}}\right)\left({\cfrac {dw_{0}}{dx_{1}}}\right)\right]\\\varepsilon _{12}&=0\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a21b537e2ea75e84391480ff4da1f5a3f5aaf967)



Stress Resultant - Displacement relations[edit | edit source]
![{\displaystyle {\begin{aligned}N_{xx}&=A_{xx}\varepsilon _{xx}^{0}+B_{xx}\varepsilon _{xx}^{1}=A_{xx}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]-B_{xx}{\cfrac {d^{2}w_{0}}{dx^{2}}}\\M_{xx}&=B_{xx}\varepsilon _{xx}^{0}+D_{xx}\varepsilon _{xx}^{1}=B_{xx}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]-D_{xx}{\cfrac {d^{2}w_{0}}{dx^{2}}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/09e134796671c8d4bf39a1a7ed5e4fac40e0d4ff)
Extensional/Bending Stiffness[edit | edit source]

If
is constant, and
-axis passes through centroid

![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}{\cfrac {d(\delta u_{0})}{dx}}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]A_{xx}~dx&=\int _{x_{a}}^{x_{b}}(\delta u_{0})f~dx+\\&\delta u_{0}(x_{a})Q_{1}+\delta u_{0}(x_{b})Q_{4}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e6cb90b2907d59be6976f3f4a0b2e67ca7944d2)
where

![{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}\left\{{\cfrac {d(\delta w_{0})}{dx}}\right.&\left[{\cfrac {du_{0}}{dx}}+{\cfrac {1}{2}}~\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {dw_{0}}{dx}}A_{xx}+\left.{\cfrac {d^{2}(\delta w_{0})}{dx^{2}}}\left({\cfrac {d^{2}w_{0}}{dx^{2}}}\right)D_{xx}\right\}~dx=\\&\int _{x_{a}}^{x_{b}}(\delta w_{0})q~dx+\delta w_{0}(x_{a})Q_{2}+\delta w_{0}(x_{b})Q_{5}+\delta \theta (x_{a})Q_{3}+\delta \theta (x_{b})Q_{6}~.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/13315a5aae21e0bdb3fc1eedd4d3f2fe689b09e4)
where
![{\displaystyle {\begin{aligned}\delta w_{0}&:=v_{2}&\delta \theta &:={\cfrac {dv_{2}}{dx}}\\Q_{2}&:=-\left[{\cfrac {dM_{xx}}{dx}}+N_{xx}{\cfrac {dw_{0}}{dx}}\right]_{x_{a}}&Q_{5}&:=\left[{\cfrac {dM_{xx}}{dx}}+N_{xx}{\cfrac {dw_{0}}{dx}}\right]_{x_{b}}\\Q_{3}&:=-M_{xx}(x_{a})&Q_{6}&:=M_{xx}(x_{b})\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c10c5324568f9e62a1216ac98ddbe5ebf7438531)
Finite element model for Euler Bernoulli beam
|

where
.
Hermite Cubic Shape Functions[edit | edit source]
Hermite shape functions for beam
|

where
![{\displaystyle {\begin{aligned}\mathbf {u} &=[u_{1}\quad u_{2}]^{T}\\\mathbf {d} &=[w_{1}\quad \theta _{1}\quad w_{2}\quad \theta _{2}]^{T}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/411d9c55d69d78c56b388005af2fcc0c2f7860c2)

Symmetric Stiffness Matrix[edit | edit source]
![{\displaystyle {\begin{aligned}K_{ij}^{11}&=\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d\psi _{i}}{dx}}{\cfrac {d\psi _{j}}{dx}}~dx\\K_{ij}^{12}&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left(A_{xx}{\cfrac {dw_{0}}{dx}}\right){\cfrac {d\psi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}~dx\\K_{ij}^{21}&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left(A_{xx}{\cfrac {dw_{0}}{dx}}\right){\cfrac {d\phi _{i}}{dx}}{\cfrac {d\psi _{j}}{dx}}~dx\\K_{ij}^{22}&=\int _{x_{a}}^{x_{b}}\left\{{\frac {1}{2}}A_{xx}\left[{\cfrac {du_{0}}{dx}}+\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {d\phi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}+D_{xx}{\cfrac {d^{2}\phi _{i}}{dx^{2}}}{\cfrac {d^{2}\phi _{j}}{dx^{2}}}\right\}~dx\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b56a59bc9b53f9a98d0d75c41d6f10d49cf2df4)


where

The residual is

For Newton iterations, we use the algorithm

where the tangent stiffness matrix is given by

![{\displaystyle {\begin{aligned}i=1\dots 2;~j=1\dots 2&:\\&{T_{ij}^{11}=K_{ij}^{11}}\\\\i=1\dots 2;~j=1\dots 4&:\\&{T_{ij}^{12}=2K_{ij}^{12}}\\\\i=1\dots 4;~j=1\dots 2&:\\&{T_{ij}^{21}=2K_{ij}^{21}}\\\\i=1\dots 4;~j=1\dots 4&:\\&{T_{ij}^{22}=K_{ij}^{22}+{\frac {1}{2}}\int _{x_{a}}^{x_{b}}A_{xx}\left[{\cfrac {du_{0}}{dx}}+2\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {d\phi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}~dx}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f2b3ce0ac52051a90d8fed30a8e9fea5e3b348da)
Recall
![{\displaystyle N_{xx}=A_{xx}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]-{B_{xx}}~~{\cfrac {d^{2}w_{0}}{dx^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e9237fbff37b9f40a5b1a43e292ea2d5a8b8835)
- Divide load into small increments.

- Compute
and
for first load step,

Stiffness of Euler-Bernoulli beam.
|
- Compute
and
for second load step,

- Continue until F is reached.
Recall

where
![{\displaystyle {\begin{aligned}K_{ij}^{11}&=\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d\psi _{i}}{dx}}{\cfrac {d\psi _{j}}{dx}}~dx\\K_{ij}^{12}&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left(A_{xx}{\cfrac {dw_{0}}{dx}}\right){\cfrac {d\psi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}~dx\\K_{ij}^{21}&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left(A_{xx}{\cfrac {dw_{0}}{dx}}\right){\cfrac {d\phi _{i}}{dx}}{\cfrac {d\psi _{j}}{dx}}~dx\\K_{ij}^{22}&=\int _{x_{a}}^{x_{b}}\left\{{\frac {1}{2}}A_{xx}\left[{\cfrac {du_{0}}{dx}}+\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {d\phi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}+D_{xx}{\cfrac {d^{2}\phi _{i}}{dx^{2}}}{\cfrac {d^{2}\phi _{j}}{dx^{2}}}\right\}~dx\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b56a59bc9b53f9a98d0d75c41d6f10d49cf2df4)
Mebrane locking in Euler-Bernoulli beam
|
Membrane strain:

or

Hence, shape functions should be such that

linear,
cubic
Element Locks!
Too stiff.
Selective Reduced Integration[edit | edit source]
- Assume
is linear ;~~
is cubic.
- Then
is constant, and
is quadratic.
- Try to keep
constant.
![{\displaystyle {\begin{aligned}K_{ij}^{11}&=\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d\psi _{i}}{dx}}{\cfrac {d\psi _{j}}{dx}}~dx\\K_{ij}^{12}&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left(A_{xx}{\cfrac {dw_{0}}{dx}}\right){\cfrac {d\psi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}~dx\\K_{ij}^{22}&=\int _{x_{a}}^{x_{b}}\left\{{\frac {1}{2}}A_{xx}\left[{\cfrac {du_{0}}{dx}}+\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]{\cfrac {d\phi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}+D_{xx}{\cfrac {d^{2}\phi _{i}}{dx^{2}}}{\cfrac {d^{2}\phi _{j}}{dx^{2}}}\right\}~dx\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/497fa462a0e19f01af90bb151137dba2fb91ed03)
integrand is constant,
integrand is fourth-order ,
integrand is eighth-order
![{\displaystyle n_{\text{gauss pt}}={\text{int}}[(p+1)/2]+1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/05aed9f00bfa383b3fbb39b445b0de4c0ff86fa6)
Assume
= constant.

![{\displaystyle {\begin{aligned}K_{ij}^{12}&={\frac {1}{2}}\int _{x_{a}}^{x_{b}}\left(A_{xx}{\cfrac {dw_{0}}{dx}}\right){\cfrac {d\psi _{i}}{dx}}{\cfrac {d\phi _{j}}{dx}}~dx\\&={\cfrac {A_{xx}}{2}}\int _{-1}^{1}\left(\sum _{i=1}^{4}w_{i}J^{-1}{\cfrac {d\phi _{i}(\xi )}{d\xi }}\right)\left(J^{-1}{\cfrac {d\psi _{i}(\xi )}{d\xi }}\right)\left(J^{-1}{\cfrac {d\phi _{j}(\xi )}{d\xi }}\right)~dx\\&\approx A_{xx}\left[W_{1}F(\xi _{1})+W_{2}F(\xi _{2})+W_{3}F(\xi _{3})\right]\leftarrow {\text{full integration}}\\&\approx A_{xx}\left[W_{1}F(\xi _{1})+W_{2}F(\xi _{2})\right]\leftarrow {\text{reduced integration}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9ebb006a71b2fd85988dad504cab84728908db86)