Mathematics for Applied Sciences (Osnabrück 2023-2024)/Part I/Lecture 19/latex

From Wikiversity
Jump to navigation Jump to search

\setcounter{section}{19}






\zwischenueberschrift{Mean value theorem for integrals}

For a Riemann-integrable function $f \colon [a,b] \rightarrow \R$, one may consider
\mathdisp {{ \frac{ \int_{ a }^{ b } f ( t) \, d t }{ b-a } }} { }
as the mean height of the function, since this value, multiplied with the length \mathl{b-a}{} of the interval, yields the area below the graph of $f$. The \stichwort {Mean value theorem for definite integrals} {} claims that, for a continuous function, this \stichwort {mean value} {} is in fact obtained by the function somewhere.




\inputfaktbeweis
{Mean value theorem for definite integrals/Riemann/Fact}
{Theorem}
{}
{

\faktsituation {Suppose that $[a,b]$ is a compact interval, and let
\mathdisp {f \colon [a,b] \longrightarrow \R} { }
be a continuous function.}
\faktfolgerung {Then there exists some
\mavergleichskette
{\vergleichskette
{c }
{ \in }{ [a,b] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} such that
\mavergleichskettedisp
{\vergleichskette
{ \int_{ a }^{ b } f ( t) \, d t }
{ =} { f(c)(b-a) }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\faktzusatz {}

}
{

On the compact interval, the function $f$ is bounded from above and from below, let \mathkor {} {m} {and} {M} {} denote the minimum and the maximum of the function. Due to Theorem 11.13 , they are both obtained. Then, in particular,
\mavergleichskette
{\vergleichskette
{ m }
{ \leq }{ f(x) }
{ \leq }{ M }
{ }{ }
{ }{ }
} {}{}{} for all
\mavergleichskette
{\vergleichskette
{ x }
{ \in }{ [a,b] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} and so
\mavergleichskettedisp
{\vergleichskette
{ m(b-a) }
{ \leq} { \int_{ a }^{ b } f ( t) \, d t }
{ \leq} { M(b-a) }
{ } { }
{ } { }
} {}{}{.} Therefore,
\mavergleichskette
{\vergleichskette
{ \int_{ a }^{ b } f ( t) \, d t }
{ = }{ d (b-a) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} with some
\mavergleichskette
{\vergleichskette
{d }
{ \in }{ [m,M] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Due to the Intermediate value theorem, there exists a
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ [a,b] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} such that
\mavergleichskette
{\vergleichskette
{ f(c) }
{ = }{ d }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}






\zwischenueberschrift{The Fundamental theorem of calculus}

It is useful to allow bounds for an integral, where the lower bound is larger than the upper bound. For
\mavergleichskette
{\vergleichskette
{a }
{ < }{b }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} and an integrable function $f \colon [a,b] \rightarrow \R$, we define
\mavergleichskettedisp
{\vergleichskette
{ \int_{ b }^{ a } f ( t) \, d t }
{ \defeq} { -\int_{ a }^{ b } f ( t) \, d t }
{ } { }
{ } { }
{ } { }
} {}{}{.}




\inputdefinition
{ }
{

Let $I$ denote a real interval, let
\mathdisp {f \colon I \longrightarrow \R} { }
denote a Riemann-integrable function, and let
\mavergleichskette
{\vergleichskette
{a }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Then the function
\mathdisp {I \longrightarrow \R , x \longmapsto \int_{ a }^{ x } f ( t) \, d t} { , }

is called the \definitionswort {integral function}{} for $f$ for the starting point $a$.

}

This function is also called the \stichwort {indefinite integral} {.}

The $x$ from the theorem is $x_0$ in the animation, and $x+h$ in the theorem is the moving $x$ in the animation. The moving point $z$ in the animation is a point which exists by the mean value theorem of definite integrals, applied to $x_0$ and $x$.

The following statement is called \stichwort {Fundamental theorem of calculus} {.}




\inputfaktbeweis
{Fundamental theorem of calculus/Riemann/Fact}
{Theorem}
{}
{

\faktsituation {Let $I$ denote a real interval, and let
\mathdisp {f \colon I \longrightarrow \R} { }
denote a continuous function. Let
\mavergleichskette
{\vergleichskette
{a }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} and let
\mavergleichskettedisp
{\vergleichskette
{ F(x) }
{ \defeq} { \int_{ a }^{ x } f ( t) \, d t }
{ } { }
{ } { }
{ } { }
} {}{}{} denote the corresponding integral function.}
\faktfolgerung {Then $F$ is differentiable, and the identity
\mavergleichskettedisp
{\vergleichskette
{ F'(x) }
{ =} { f(x) }
{ } { }
{ } { }
{ } { }
} {}{}{} holds for all
\mavergleichskette
{\vergleichskette
{x }
{ \in }{ I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktzusatz {}

}
{

Let $x$ be fixed. The difference quotient is
\mavergleichskettedisp
{\vergleichskette
{\frac{F(x+h)-F(x) }{h} }
{ =} { \frac{1}{h} { \left( \int_{ a }^{ x+h } f ( t) \, d t - \int_{ a }^{ x } f ( t) \, d t \right) } }
{ =} { \frac{1}{h} \int_{ x }^{ x+h } f ( t) \, d t }
{ } { }
{ } { }
} {}{}{.} We have to show that for \mathl{h \rightarrow 0}{,} the limit exists and equals \mathl{f(x)}{.} Because of the Mean value theorem for definite integrals, for every $h$, there exists a
\mavergleichskette
{\vergleichskette
{c_h }
{ \in }{ [x,x+h] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} with
\mavergleichskettedisp
{\vergleichskette
{ f(c_h) \cdot h }
{ =} { \int_x^{x+h} f(t)dt }
{ } { }
{ } { }
{ } { }
} {}{}{,} and therefore
\mavergleichskettedisp
{\vergleichskette
{ f(c_h) }
{ =} { { \frac{ \int_x^{x+h} f(t)dt }{ h } } }
{ } { }
{ } { }
{ } { }
} {}{}{.} For \mathl{h \rightarrow 0}{,} $c_h$ converges to $x$, and because of the continuity of $f$, also \mathl{f(c_h)}{} converges to \mathl{f(x)}{.}

}






\zwischenueberschrift{Primitive functions}




\inputdefinition
{ }
{

Let
\mavergleichskette
{\vergleichskette
{I }
{ \subseteq }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} denote an interval, and let
\mathdisp {f \colon I \longrightarrow \R} { }
denote a function. A function
\mathdisp {F \colon I \longrightarrow \R} { }
is called a \definitionswort {primitive function}{} for $f$, if $F$ is differentiable on $I$ and if
\mavergleichskette
{\vergleichskette
{ F'(x) }
{ = }{ f(x) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds for all
\mavergleichskette
{\vergleichskette
{x }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
}

{}{}{.}

}

A primitive function is also called an \stichwort {antiderivative} {.} The fundamental theorem of calculus might be rephrased, in connection with Theorem 18.17 , as an existence theorem for primitive functions.




\inputfaktbeweis
{Continuous Function/Primitive function exists/Fact}
{Corollary}
{}
{

\faktsituation {Let $I$ denote a real interval, and let
\mathdisp {f \colon I \longrightarrow \R} { }
denote a continuous function.}
\faktfolgerung {Then $f$ has a primitive function.}
\faktzusatz {}

}
{

Let
\mavergleichskette
{\vergleichskette
{a }
{ \in }{ I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} be an arbitrary point. Due to Theorem 18.17 , there exists the function
\mavergleichskettedisp
{\vergleichskette
{ F(x) }
{ =} { \int_{ a }^{ x } f ( t) \, d t }
{ } { }
{ } { }
{ } { }
} {}{}{,} and because of the Fundamental theorem, the identity
\mavergleichskette
{\vergleichskette
{ F'(x) }
{ = }{ f(x) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds. This means that $F$ is a primitive function for $f$.

}





\inputfaktbeweis
{Interval/Primitive function/Constant difference/Fact}
{Lemma}
{}
{

\faktsituation {Let $I$ denote a real interval, and let
\mathdisp {f \colon I \longrightarrow \R} { }
denote a function.}
\faktvoraussetzung {Suppose that \mathkor {} {F} {and} {G} {} are primitive functions of $f$.}
\faktfolgerung {Then \mathl{F-G}{} is a constant function.}
\faktzusatz {}

}
{

We have
\mavergleichskettedisp
{\vergleichskette
{ (F-G)' }
{ =} { F'-G' }
{ =} { f-f }
{ =} { 0 }
{ } { }
} {}{}{.} Therefore, due to Corollary 15.6 , the difference \mathl{F-G}{} is constant.

}


Isaac Newton (1643-1727)
Gottfried Wilhelm Leibniz (1646-1716)

The following statement is also a version of the fundamental theorem, it is called the \stichwort {Newton-Leibniz-formula} {.}




\inputfaktbeweis
{Main theorem of calculus/Riemann/Newton-Leibniz-formula/Fact}
{Corollary}
{}
{

\faktsituation {Let $I$ denote a real interval, and let
\mathdisp {f \colon I \longrightarrow \R} { }
denote a continuous function.}
\faktvoraussetzung {Suppose that $F$ is a primitive function for $f$.}
\faktfolgerung {Then for
\mavergleichskette
{\vergleichskette
{a,b }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} the identity
\mavergleichskettedisp
{\vergleichskette
{ \int_{ a }^{ b } f ( t) \, d t }
{ =} { F(b)- F(a) }
{ } { }
{ } { }
{ } { }
} {}{}{} holds.}
\faktzusatz {}

}
{

Due to Theorem 18.17 , the integral exists. With the integral function
\mavergleichskettedisp
{\vergleichskette
{ G(x) }
{ \defeq} { \int_{ a }^{ x } f ( t) \, d t }
{ } { }
{ } { }
{ } { }
} {}{}{,} we have the relation
\mavergleichskettedisp
{\vergleichskette
{ \int_{ a }^{ b } f ( t) \, d t }
{ =} { G(b) }
{ =} { G(b) - G(a) }
{ } { }
{ } { }
} {}{}{.} Because of Theorem 19.3 , the function $G$ is differentiable and
\mavergleichskettedisp
{\vergleichskette
{ G'(x) }
{ =} { f(x) }
{ } { }
{ } { }
{ } { }
} {}{}{} holds. Hence $G$ is a primitive function for $f$. Due to Lemma 19.6 , we have
\mavergleichskette
{\vergleichskette
{F(x) }
{ = }{ G(x)+c }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Therefore,
\mavergleichskettedisp
{\vergleichskette
{ \int_{ a }^{ b } f ( t) \, d t }
{ =} { G(b) - G(a) }
{ =} { F(b) - c - F(a) + c }
{ =} { F(b) -F(a) }
{ } { }
} {}{}{.}

}


Since a primitive function is only determined up to an additive constant, we sometimes write
\mavergleichskettedisp
{\vergleichskette
{ \int_{ }^{ } f ( t) \, d t }
{ =} { F+c }
{ } { }
{ } { }
{ } { }
} {}{}{.} Here $c$ is called a \stichwort {constant of integration} {.} In certain situations, in particular in relation with \stichwort {differential equations} {,} this constant is determined by further conditions.




\inputnotation
{ }
{

Let $I$ denote a real interval, and
\mathdisp {F \colon I \longrightarrow \R} { }
a primitive function for a function $f \colon I \rightarrow \R$. Suppose that
\mavergleichskette
{\vergleichskette
{ a,b }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Then one sets
\mavergleichskettedisp
{\vergleichskette
{ F | _{ a } ^{ b } }
{ \defeq} { F(b) -F(a) }
{ =} { \int_{ a }^{ b } f ( t) \, d t }
{ } { }
{ } { }
}

{}{}{.}

}

This notation is basically used for computations, in particular, when we want to determine definite integrals.

Using known results about the derivatives of differentiable functions, we obtain a list of primitive functions for some important functions. In general however, it is difficult to find a primitive function.

The primitive function of \mathl{x^a}{,} where
\mavergleichskette
{\vergleichskette
{x }
{ \in }{\R_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} and
\mathbed {a \in \R} {}
{a \neq -1} {}
{} {} {} {,} is \mathl{{ \frac{ 1 }{ a+1 } }x^{a+1}}{.}




\inputbeispiel{}
{

Suppose that the distance between two masses \zusatzklammer {thought of as mass points} {} {} \mathkor {} {M} {and} {m} {} is $R_0$. Because of gravitation, this system contains a certain potential energy. How is this potential energy changing, when we move these masses to a distance
\mavergleichskette
{\vergleichskette
{ R_1 }
{ \geq }{ R_0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{?}

The needed energy is force times path, where the force itself depends on the distance between the masses. Due to the gravitation law, the force, given the distance $r$ between the masses, equals
\mavergleichskettedisp
{\vergleichskette
{ F(r) }
{ =} { \gamma { \frac{ Mm }{ r^2 } } }
{ } { }
{ } { }
{ } { }
} {}{}{,} where $\gamma$ denotes the constant of gravitation. Therefore, the energy needed to increase the distance from $R_0$ to $R_1$, equals
\mavergleichskettedisp
{\vergleichskette
{E }
{ =} { \int_{ R_0 }^{ R_1 } \gamma { \frac{ Mm }{ r^2 } } \, d r }
{ =} { \gamma M m \int_{ R_0 }^{ R_1 } { \frac{ 1 }{ r^2 } } \, d r }
{ =} { \gamma M m { \left( - { \frac{ 1 }{ r } } | _{ R_0 } ^{ R_1 }\right) } }
{ =} { \gamma M m { \left( { \frac{ 1 }{ R_0 } } - { \frac{ 1 }{ R_1 } }\right) } }
} {}{}{.} Hence it is possible to assign a value to the difference between the potential energies for the two distances \mathkor {} {R_0} {and} {R_1} {,} though it is not possible to assign an absolute value to the potential energy for a given distance.

}

The primitive function of the function \mathl{{ \frac{ 1 }{ x } }}{} is the natural logarithm.

The primitive function of the exponential function is the exponential function itself.

The primitive function of \mathl{\sin x}{} is \mathl{-\cos x}{,} the primitive function of \mathl{\cos x}{} is $\sin x$.

The primitive function of \mathl{{ \frac{ 1 }{ 1+x^2 } }}{} is \mathl{\arctan x}{,} due to Theorem 16.20 .

The primitive function of \mathl{{ \frac{ 1 }{ 1-x^2 } }}{} \zusatzklammer {for
\mavergleichskette
{\vergleichskette
{ x }
{ \in }{ {]{-1},1[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} is \mathl{{ \frac{ 1 }{ 2 } } \ln { \frac{ 1+x }{ 1-x } }}{,} because we have


\mavergleichskettealign
{\vergleichskettealign
{ { \left( { \frac{ 1 }{ 2 } } \cdot \ln { \frac{ 1+x }{ 1-x } }\right) }^\prime }
{ =} { { \frac{ 1 }{ 2 } } \cdot { \frac{ 1-x }{ 1+x } } \cdot { \frac{ (1-x)+ (1+x) }{ (1-x)^2 } } }
{ =} { { \frac{ 1 }{ 2 } } \cdot { \frac{ 2 }{ (1+x)(1-x) } } }
{ =} { { \frac{ 1 }{ (1-x^2) } } }
{ } { }
} {} {}{.}


Caution! Integration rules are only applicable for functions, which are defined on the whole interval. In particular, the following is not true
\mavergleichskettedisp
{\vergleichskette
{ \int_{ -a }^{ a } { \frac{ dt }{ t^2 } } \, d t }
{ =} { - { \frac{ 1 }{ x } } | _{ -a } ^{ a } }
{ =} { - { \frac{ 1 }{ a } } - { \frac{ 1 }{ a } } }
{ =} { - { \frac{ 2 }{ a } } }
{ } { }
} {}{}{,} since we integrate over a point where the function is not defined.




\inputbeispiel{}
{

We consider the function
\mathdisp {f \colon \R \longrightarrow \R , t \longmapsto f(t)} { , }
given by
\mavergleichskettedisp
{\vergleichskette
{ f(t) }
{ \defeq} { \begin{cases} 0 \text{ for } t = 0, \\ \frac{1}{t} \sin \frac{1}{t^2} \text{ for } t \neq 0 \, .\end{cases} }
{ } { }
{ } { }
{ } { }
} {}{}{} This function is not Riemann-integrable, because it it neither bounded from above nor from below. Hence, there exist no upper step functions for $f$. However, $f$ still has a primitive function. To see this, we consider the function
\mavergleichskettedisp
{\vergleichskette
{ H(t) }
{ \defeq} { \begin{cases} 0 \text{ for } t = 0, \\ \frac{ t^2}{2} \cos \frac{1}{t^2} \text{ for } t \neq 0 \, .\end{cases} }
{ } { }
{ } { }
{ } { }
} {}{}{} This function is differentiable. For
\mavergleichskette
{\vergleichskette
{t }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} the derivative is
\mavergleichskettedisp
{\vergleichskette
{ H'(t) }
{ =} {t \cos \frac{1}{t^2} + \frac{1}{t} \sin \frac{1}{t^2} }
{ } { }
{ } { }
{ } { }
} {}{}{.} For
\mavergleichskette
{\vergleichskette
{t }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} the difference quotient is
\mavergleichskettedisp
{\vergleichskette
{ \frac{ \frac{h^2}{2} \cos \frac{1}{h^2} }{h} }
{ =} { \frac{h}{2} \cos \frac{1}{h^2} }
{ } { }
{ } { }
{ } { }
} {}{}{.} For \mathl{h \mapsto 0}{,} the limit exists and equals $0$, so that $H$ is differentiable everywhere \zusatzklammer {but not continuously differentiable} {} {.} The first summand in $H'$ is continuous, and therefore, due to Theorem 18.17 , it has a primitive function $G$. Hence \mathl{H - G}{} is a primitive function for $f$. This follows for
\mavergleichskette
{\vergleichskette
{t }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} from the explicit derivative and for
\mavergleichskette
{\vergleichskette
{t }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} from
\mavergleichskettedisp
{\vergleichskette
{ H'(0)-G'(0) }
{ =} { 0-0 }
{ =} { 0 }
{ } { }
{ } { }
} {}{}{.}

}






\zwischenueberschrift{Primitive functions for power series}

We recall that the derivative of a convergent power series is obtained by derivating the summands.




\inputfaktbeweisnichtvorgefuehrt
{Convergent power series/R/Primitive function/Fact}
{Lemma}
{}
{

\faktsituation {Let
\mavergleichskette
{\vergleichskette
{f }
{ = }{ \sum_{n = 0}^\infty a_n x^n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} denote a power series which converges on \mathl{]-r,r[}{.}}
\faktfolgerung {Then the power series
\mathdisp {\sum_{n=1}^\infty \frac{a_{n-1} }{n} x^n} { }
converges also on \mathl{]-r,r[}{,} and represents a primitive function for $f$.}
\faktzusatz {}

}
{Convergent power series/R/Primitive function/Fact/Proof

}


With the help of this statement, one can sometimes find the Taylor polynomial \zusatzklammer {or Taylor series} {} {} of a function by using the Taylor polynomial of the derivative. We give a typical example.


\inputbeispiel{}
{

We would like to determine the Taylor series of the natural logarithm in the point $1$. The derivative of the natural logarithm equals \mathl{1/x}{,} due to Corollary 16.6 . This function has the power series expansion
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ x } } }
{ =} { \sum_{k = 0}^\infty (-1)^k (x-1)^k }
{ } { }
{ } { }
{ } { }
} {}{}{,} due to Theorem 9.13 \zusatzklammer {which converges for
\mavergleichskette
{\vergleichskette
{ \betrag { x-1 } }
{ < }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {.} Therefore, because of Lemma 19.11 , the power series expansion of the natural logarithm is
\mathdisp {\sum_{k=1}^\infty { \frac{ (-1)^{k-1} }{ k } } (x-1)^k} { . }
Setting
\mavergleichskette
{\vergleichskette
{z }
{ = }{ x-1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} we may write this series as
\mathdisp {z- { \frac{ z^2 }{ 2 } } + { \frac{ z^3 }{ 3 } } - { \frac{ z^4 }{ 4 } } + { \frac{ z^5 }{ 5 } } - \ldots} { . }

}