Jump to content

Mathematics for Applied Sciences (Osnabrück 2023-2024)/Part I/Lecture 15/latex

From Wikiversity

\setcounter{section}{15}






\subtitle {Higher derivatives}

The derivative $f'$ of a differentiable function is also called the \keyword {first derivative} {} of $f$. The zeroth derivative is the function itself. Higher derivatives are defined recursively.


\inputdefinition
{ }
{

Let
\mathrelationchain
{\relationchain
{ I }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} denote an interval, and let
\mathdisp {f \colon I \longrightarrow \R} { }
be a function. The function $f$ is called $n$-times \definitionword {differentiable}{,} if it is \mathl{(n-1)}{-}times differentiable, and the \mathl{(n-1)}{-}th derivative, that is \mathl{f^{(n-1)}}{,} is also differentiable. The derivative
\mathrelationchaindisplay
{\relationchain
{ f^{(n)} (x) }
{ \defeq} {(f^{(n-1)})' (x) }
{ } { }
{ } { }
{ } { }
} {}{}{}

is called the $n$-th \definitionword {derivative}{} of $f$.

}

The second derivative is written as \mathl{f^{\prime \prime}}{,} the third derivative as \mathl{f^{\prime \prime \prime}}{.} If a function is $n$-times differentiable, then we say that the derivatives exist up to \keyword {order} {} $n$. A function $f$ is called \keyword {infinitely often differentiable} {,} if it is $n$-times differentiable for every $n$.

A differentiable function is continuous due to Corollary 14.6 , but its derivative is not necessarily so. Therefore, the following concept is justified.


\inputdefinition
{ }
{

Let
\mathrelationchain
{\relationchain
{I }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} be an interval, and let
\mathdisp {f \colon I \longrightarrow \R} { }
be a function. The function $f$ is called \definitionword {continuously differentiable}{,} if $f$ is differentiable and its derivative $f'$ is

continuous.

}

A function is called $n$-times \keyword {continuously differentiable} {,} if it is $n$-times differentiable, and its $n$-th derivative is continuous.






\subtitle {Extrema of functions}

We investigate now, with the help of the methods from differentiability, when a differentiable function
\mathdisp {f \colon I \longrightarrow \R} { , }
where
\mathrelationchain
{\relationchain
{I }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} denotes an interval, has a \extrabracket {local} {} {} extremum, and how the growing behavior looks like.




\inputfactproof
{Real function/Open interval/Local extrema/Differentiable/Derivative zero/Fact}
{Theorem}
{}
{

\factsituation {Let
\mathdisp {f \colon {]a,b[} \longrightarrow \R} { }
be a function}
\factcondition {which attains in
\mathrelationchain
{\relationchain
{c }
{ \in }{ {]a,b[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} a local extremum, and is differentiable there.}
\factconclusion {Then
\mathrelationchain
{\relationchain
{f'(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds.}
\factextra {}
}
{

We may assume that $f$ attains a local maximum in $c$. This means that there exists an
\mathrelationchain
{\relationchain
{ \epsilon }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} such that
\mathrelationchain
{\relationchain
{f(x) }
{ \leq }{f(c) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds for all
\mathrelationchain
{\relationchain
{x }
{ \in }{ [c - \epsilon, c + \epsilon] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Let \mathl{{ \left( s_n \right) }_{n \in \N }}{} be a sequence with
\mathrelationchain
{\relationchain
{ c- \epsilon }
{ \leq }{s_n }
{ < }{ c }
{ }{ }
{ }{ }
} {}{}{,} tending to $c$ \extrabracket {\quotationshort{from below}{}} {} {.} Then
\mathrelationchain
{\relationchain
{ s_n- c }
{ < }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} and so
\mathrelationchain
{\relationchain
{f(s_n) -f(c) }
{ \leq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} and therefore the difference quotient
\mathrelationchaindisplay
{\relationchain
{ \frac{ f (s_n )-f (c) }{ s_n -c } }
{ \geq} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Due to Lemma 7.12 , this relation carries over to the limit, which is the derivative. Hence,
\mathrelationchain
{\relationchain
{f'(c) }
{ \geq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} For another sequence \mathl{{ \left( t_n \right) }_{n \in \N }}{} with
\mathrelationchain
{\relationchain
{ c + \epsilon }
{ \geq }{ t_n }
{ > }{ c }
{ }{ }
{ }{ }
} {}{}{,} we get
\mathrelationchaindisplay
{\relationchain
{ \frac{ f (t_n )-f (c) }{ t_n -c } }
{ \leq} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Therefore, also
\mathrelationchain
{\relationchain
{f'(c) }
{ \leq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} and thus
\mathrelationchain
{\relationchain
{f'(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}







\image{ \begin{center}
\includegraphics[width=5.5cm]{\imageinclude {X_Cubed.svg} }
\end{center}
\imagetext {} }

\imagelicense { X Cubed.svg } {} {Pieter Kuiper} {Commons} {PD} {}


We remark that the vanishing of the derivative is only a necessary, but not a sufficient, criterion for the existence of an extremum. The easiest example for this phenomenon is the function $\R \rightarrow \R , x \mapsto x^3$, which is strictly increasing and its derivative is zero at the zero point. We will provide a sufficient criterion in Corollary 15.9  below, see also Theorem 17.4 .






\subtitle {The mean value theorem}




\inputfactproof
{Real function/Theorem of Rolle/Fact}
{Theorem}
{}
{

\factsituation {Let
\mathrelationchain
{\relationchain
{a }
{ < }{b }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} and let
\mathdisp {f \colon [a,b] \longrightarrow \R} { }
be a continuous function, which is differentiable on \mathl{]a,b[}{,}}
\factcondition {and such that
\mathrelationchain
{\relationchain
{f(a) }
{ = }{f(b) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\factconclusion {Then there exists some
\mathrelationchain
{\relationchain
{c }
{ \in }{ {]a,b[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} such that
\mathrelationchaindisplay
{\relationchain
{f'(c) }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\factextra {}
}
{

The statement is true if $f$ is constant. So suppose that $f$ is not constant. Then there exists some
\mathrelationchain
{\relationchain
{x }
{ \in }{{]a,b[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} such that
\mathrelationchain
{\relationchain
{f(x) }
{ \neq }{ f(a) }
{ = }{ f(b) }
{ }{ }
{ }{ }
} {}{}{.} Let's say that \mathl{f(x)}{} has a larger value. Due to Theorem 11.13 , there exists some
\mathrelationchain
{\relationchain
{c }
{ \in }{ [a,b] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} where the function attains its maximum. This point is not on the border. For this $c$, we have
\mathrelationchain
{\relationchain
{f'(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} due to Theorem 15.3 .

}


This theorem is called \keyword {Theorem of Rolle} {.}




\image{ \begin{center}
\includegraphics[width=5.5cm]{\imageinclude {Mvt2_italian.svg} }
\end{center}
\imagetext {The mean value theorem means that, for every secant, there exists a parallel tangent.} }

\imagelicense { Mvt2 italian.svg } {} {4C} {Commons} {CC-by-sa 3.0} {}

The following theorem is called \keyword {Mean value theorem} {.} It says that if a function describes a differentiable one-dimensional movement, then the average velocity is obtained at least once as the instantaneous velocity.




\inputfactproof
{Differentiable functions/Mean value theorem/Fact}
{Theorem}
{}
{

\factsituation {Let
\mathrelationchain
{\relationchain
{a }
{ < }{b }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} and let
\mathdisp {f \colon [a,b] \longrightarrow \R} { }
be a continuous function which is differentiable on \mathl{]a,b[}{.}}
\factconclusion {Then there exists some
\mathrelationchain
{\relationchain
{c}
{ \in }{{]a,b[}}
{ }{}
{ }{}
{ }{}
} {}{}{,} such that
\mathrelationchaindisplay
{\relationchain
{ f'(c)}
{ =} { { \frac{ f(b)-f(a) }{ b-a } } }
{ } {}
{ } {}
{ } {}
} {}{}{.}}
\factextra {}
}
{

We consider the auxiliary function
\mathdisp {g \colon [a,b] \longrightarrow \R , x \longmapsto g(x) \defeq f(x) - { \frac{ f(b) -f(a) }{ b-a } } (x-a)} { . }
This function is also continuous and differentiable in \mathl{]a,b[}{.} Moreover, we have
\mathrelationchain
{\relationchain
{ g(a) }
{ = }{ f(a) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} and
\mathrelationchaindisplay
{\relationchain
{ g(b) }
{ =} { f(b) -(f(b)-f(a)) }
{ =} { f(a) }
{ } { }
{ } { }
} {}{}{.} Hence, $g$ fulfills the conditions of Theorem 15.4 , and therefore there exists some
\mathrelationchain
{\relationchain
{c }
{ \in }{ {]a,b[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} such that
\mathrelationchain
{\relationchain
{g'(c) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Because of the rules for derivatives, we obtain
\mathrelationchaindisplay
{\relationchain
{ f'(c) }
{ =} { { \frac{ f(b) -f(a) }{ b-a } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}





\inputfactproof
{Real function/Derivative zero/Constant/Fact}
{Corollary}
{}
{

\factsituation {Let
\mathdisp {f \colon { ]a,b[} \longrightarrow \R} { }
be a differentiable function}
\factcondition {such that
\mathrelationchain
{\relationchain
{ f'(x) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} for all
\mathrelationchain
{\relationchain
{ x }
{ \in }{ {]a,b[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\factconclusion {Then $f$ is constant.}
\factextra {}
}
{

If $f$ is not constant, then there exists some
\mathrelationchain
{\relationchain
{x }
{ < }{x' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} such that
\mathrelationchain
{\relationchain
{ f(x) }
{ \neq }{ f(x') }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Then there exists, due to the mean value theorem, some
\mathcond {c} {}
{x <c < x'} {}
{} {} {} {,} such that
\mathrelationchain
{\relationchain
{f'(c) }
{ = }{ \frac{f(x') - f(x)}{x'-x} }
{ \neq }{ 0 }
{ }{ }
{ }{ }
} {}{}{,} which contradicts the assumption.

}





\inputfactproof
{Real function/Derivative/Monotonicity/Fact}
{Theorem}
{}
{

\factsituation {Let
\mathrelationchain
{\relationchain
{I }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} be an open interval, and let
\mathdisp {f \colon I \longrightarrow \R} { }
be a differentiable function.}
\factsegue {Then the following statements hold.}
\factconclusion {\enumerationthree {The function $f$ is increasing \extrabracket {decreasing} {} {} on $I$, if and only if
\mathrelationchain
{\relationchain
{f'(x) }
{ \geq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \extrabracket {
\mathrelationchain
{\relationchain
{f'(x) }
{ \leq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} holds for all
\mathrelationchain
{\relationchain
{x }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} } {If
\mathrelationchain
{\relationchain
{f'(x) }
{ \geq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds for all
\mathrelationchain
{\relationchain
{x }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} and $f'$ has only finitely many zeroes, then $f$ is strictly increasing. } {If
\mathrelationchain
{\relationchain
{f'(x) }
{ \leq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds for all
\mathrelationchain
{\relationchain
{x }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} and $f'$ has only finitely many zeroes, then $f$ is strictly decreasing.}}
\factextra {}
}
{

(1). It is enough to prove the statements for increasing functions. If $f$ is increasing and
\mathrelationchain
{\relationchain
{x }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} then the difference quotient fulfills
\mathrelationchaindisplay
{\relationchain
{ \frac{f(x+h) -f(x) }{h} }
{ \geq} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{} for every $h$ with
\mathrelationchain
{\relationchain
{x+h }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} This estimate carries over to the limit as \mathl{h \rightarrow 0}{,} and this limit is \mathl{f'(x)}{.}
Suppose now that the derivative is $\geq 0$. We assume, in order to obtain a contradiction, that there exist two points
\mathrelationchain
{\relationchain
{x }
{ < }{x' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in $I$ with
\mathrelationchain
{\relationchain
{f(x) }
{ > }{f(x') }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Due to the mean value theorem, there exists some $c$ with
\mathrelationchain
{\relationchain
{x }
{ < }{c }
{ < }{x' }
{ }{ }
{ }{ }
} {}{}{} and
\mathrelationchaindisplay
{\relationchain
{f'(c) }
{ =} {\frac{f(x') - f(x)}{x'-x} }
{ <} {0 }
{ } { }
{ } { }
} {}{}{,} which contradicts the condition.
(2). Suppose now that
\mathrelationchain
{\relationchain
{f'(x) }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds with finitely many exceptions. We assume that
\mathrelationchain
{\relationchain
{f(x) }
{ = }{f(x') }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds for two points
\mathrelationchain
{\relationchain
{x }
{ < }{x' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Since $f$ is increasing, due to the first part, it follows that $f$ is constant on the interval \mathl{[x,x']}{.} But then
\mathrelationchain
{\relationchain
{f' }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} on this interval, which contradicts the condition that $f'$ has only finitely many zeroes.

}





\inputfactproof
{Polynomial function/Function behavior from differentiability/Fact}
{Corollary}
{}
{

A real polynomial function
\mathdisp {f \colon \R \longrightarrow \R} { }
of degree
\mathrelationchain
{\relationchain
{ d }
{ \geq }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} has at most \mathl{d-1}{} local extrema, and one can partition the real numbers into at most $d$ intervals, on which $f$ is alternatingly strictly increasing or strictly decreasing.

}
{See Exercise 15.14 .}





\inputfactproof
{Real function/Extrema/Second derivative/Fact}
{Corollary}
{}
{

\factsituation {Let $I$ denote a real interval,
\mathdisp {f \colon I \longrightarrow \R} { }
a twice continuously differentiable function, and
\mathrelationchain
{\relationchain
{a }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} an inner point of the interval.}
\factcondition {Suppose that
\mathrelationchain
{\relationchain
{ f'(a) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds.}
\factsegue {Then the following statements hold.}
\factconclusion {\enumerationtwo {If
\mathrelationchain
{\relationchain
{f^{\prime \prime }(a) }
{ > }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds, then $f$ has an isolated local minimum in $a$. } {If
\mathrelationchain
{\relationchain
{ f^{ \prime \prime}(a) }
{ < }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds, then $f$ has an isolated local maximum in $a$. }}
\factextra {}

}
{See Exercise 15.15 .}


We will encounter a more general statement in Theorem 17.4 .






\subtitle {General mean value theorem and L'Hôpital's rule}

The following statement is called also the \keyword {general mean value theorem} {.}




\inputfactproof
{Differentiable function/Mean value theorem/Quotient version/Fact}
{Theorem}
{}
{

\factsituation {Let
\mathrelationchain
{\relationchain
{b }
{ > }{a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} and suppose that
\mathdisp {f,g \colon [a,b] \longrightarrow \R} { }
are continuous functions which are differentiable on \mathl{]a,b[}{} and such that
\mathrelationchaindisplay
{\relationchain
{ g'(x) }
{ \neq} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{} for all
\mathrelationchain
{\relationchain
{x }
{ \in }{{]a,b[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\factconclusion {Then
\mathrelationchain
{\relationchain
{ g(b) }
{ \neq }{ g(a) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} and there exists some
\mathrelationchain
{\relationchain
{c }
{ \in }{{]a,b[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} such that
\mathrelationchaindisplay
{\relationchain
{ \frac{f(b)-f(a)}{g(b)-g(a)} }
{ =} {\frac{f'(c)}{g'(c)} }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\factextra {}
}
{

The statement
\mathrelationchaindisplay
{\relationchain
{g(a) }
{ \neq} {g(b) }
{ } { }
{ } { }
{ } { }
} {}{}{} follows from Theorem 15.4 . We consider the auxiliary function
\mathrelationchaindisplay
{\relationchain
{ h(x) }
{ \defeq} { f(x)- { \frac{ f(b)-f(a) }{ g(b)-g(a) } } g(x) }
{ } { }
{ } { }
{ } { }
} {}{}{.} We have
\mathrelationchainalign
{\relationchainalign
{ h(a) }
{ =} { f(a)- { \frac{ f(b)-f(a) }{ g(b)-g(a) } } g(a) }
{ =} { { \frac{ f(a) g(b) - f(a)g(a) -f(b)g(a)+f(a)g(a) }{ g(b)-g(a) } } }
{ =} { { \frac{ f(a) g(b)-f(b)g(a) }{ g(b)-g(a) } } }
{ =} { { \frac{ f(b)g(b) - f(b) g(a)-f(b)g(b)+f(a)g(b) }{ g(b)-g(a) } } }
} {
\relationchainextensionalign
{ =} { f(b) - { \frac{ f(b)-f(a) }{ g(b)-g(a) } } g(b) }
{ =} { h(b) }
{ } {}
{ } {}
} {}{.} Therefore,
\mathrelationchain
{\relationchain
{h(a) }
{ = }{h(b) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} and Theorem 15.4 yields the existence of some
\mathrelationchain
{\relationchain
{c }
{ \in }{{]a,b[} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} with
\mathrelationchaindisplay
{\relationchain
{h'(c) }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Rearranging proves the claim.

}


From this version, one can recover the mean value theorem, by taking for $g$ the identity.






\image{ \begin{center}
\includegraphics[width=5.5cm]{\imageinclude {Guillaume_de_lHopital.jpg} }
\end{center}
\imagetext { L’Hospital (1661-1704)} }

\imagelicense { Guillaume de l'Hôpital.jpg } {} {Bemoeial} {Commons} {PD} {}

For the computation of the limit of a function, the following method called \keyword {L'Hôpital's rule} {} helps.




\inputfactproof
{Hospital/Differentiable in inner interval/Fact}
{Corollary}
{}
{

\factsituation {Let
\mathrelationchain
{\relationchain
{I }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} denote an open interval, and let
\mathrelationchain
{\relationchain
{ a }
{ \in }{ I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} denote a point. Suppose that
\mathdisp {f,g \colon I \longrightarrow \R} { }
are continuous functions,}
\factcondition {which are differentiable on \mathl{I \setminus \{ a \}}{,} fulfilling
\mathrelationchain
{\relationchain
{ f( a ) }
{ = }{ g( a ) }
{ = }{ 0 }
{ }{ }
{ }{ }
} {}{}{,} and with
\mathrelationchain
{\relationchain
{ g'(x) }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} for
\mathrelationchain
{\relationchain
{x }
{ \neq }{a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Moreover, suppose that the limit
\mathrelationchaindisplay
{\relationchain
{w }
{ \defeq} { \operatorname{lim}_{ x \rightarrow a } \, \frac{f'(x)}{g'(x)} }
{ } { }
{ } { }
{ } { }
} {}{}{} exists.}
\factconclusion {Then also the limit
\mathdisp {\operatorname{lim}_{ x \rightarrow a } \, \frac{f(x)}{g(x)}} { }
exists, and it also equals $w$.}
\factextra {}
}
{

Because $g'$ has no zero in the interval and
\mathrelationchain
{\relationchain
{ g(a) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} holds, it follows, because of Theorem 15.4 , that $a$ is the only zero of $g$. Let \mathl{{ \left( x_n \right) }_{n \in \N }}{} denote a sequence in \mathl{I \setminus \{ a \}}{,} converging to $a$.

For every $x_n$ there exists, due to Theorem 15.10 , applied to the interval \mathcor {} {I_n \defeq [x_n, a ]} {or} {[ a ,x_n]} {,} a $c_n$

\extrabracket {in the interior\extrafootnote {

The \definitionword {interior}{} of a real interval
\mathrelationchain
{\relationchain
{ I }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}

is the interval without the boundaries.
} {} {}

of $I_n$,} {} {} fulfilling
\mathrelationchaindisplay
{\relationchain
{ \frac{f(x_n)-f( a )}{g( x_n )-g( a ) } }
{ =} { \frac{f'(c_n)}{g'(c_n)} }
{ } { }
{ } { }
{ } { }
} {}{}{.} The sequence \mathl{{ \left( c_n \right) }_{n \in \N }}{} converges also to $a$, so that, because of the condition, the right-hand side converges to
\mathrelationchain
{\relationchain
{ \frac{f'( a )}{g'( a )} }
{ = }{ w }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Therefore, also the left-hand side converges to $w$, and, because of
\mathrelationchain
{\relationchain
{ f( a ) }
{ = }{ g( a ) }
{ = }{ 0 }
{ }{ }
{ }{ }
} {}{}{,} this means that \mathl{\frac{f(x_n)}{g(x_n)}}{} converges to $w$.

}





\inputexample{}
{

The polynomials
\mathdisp {3x^2-5x-2 \text{ and } x^3-4x^2+x+6} { }
have both a zero for
\mathrelationchain
{\relationchain
{x }
{ = }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} It is therefore not immediately clear whether the limit
\mathdisp {\operatorname{lim}_{ x \rightarrow 2 } \, \frac{ 3x^2-5x-2}{x^3-4x^2+x+6}} { }
exists. Applying twice L'Hôpital's rule, we get the existence and
\mathrelationchaindisplay
{\relationchain
{ \operatorname{lim}_{ x \rightarrow 2 } \, \frac{ 3x^2-5x-2}{x^3-4x^2+x+6} }
{ =} { \operatorname{lim}_{ x \rightarrow 2 } \, \frac{ 6x-5}{3x^2-8x+1} }
{ =} { \frac{7}{-3} }
{ =} { - \frac{7}{3} }
{ } { }
} {}{}{.}

}