Exercise for the break
Let
E
{\displaystyle {}E}
be an
affine space
of
dimension
d
{\displaystyle {}d}
, and let
F
,
G
⊆
E
{\displaystyle {}F,G\subseteq E}
be
affine subspaces
of dimension
r
{\displaystyle {}r}
and
s
{\displaystyle {}s}
,
respectively. Show that
F
∩
G
=
∅
{\displaystyle {}F\cap G=\emptyset }
is either empty, or that its dimension is at least
r
+
s
−
n
{\displaystyle {}r+s-n}
.
Exercises
Check whether the points
(
5
4
7
)
,
(
−
2
1
6
)
,
(
3
−
9
4
)
,
(
−
8
8
3
)
{\displaystyle {\begin{pmatrix}5\\4\\7\end{pmatrix}},\,{\begin{pmatrix}-2\\1\\6\end{pmatrix}},\,{\begin{pmatrix}3\\-9\\4\end{pmatrix}},\,{\begin{pmatrix}-8\\8\\3\end{pmatrix}}}
in
R
3
{\displaystyle {}\mathbb {R} ^{3}}
are
affinely independent .
Let
E
{\displaystyle {}E}
be an
affine space
over a
K
{\displaystyle {}K}
-vector space
V
{\displaystyle {}V}
, and let
P
1
,
…
,
P
n
{\displaystyle P_{1},\ldots ,P_{n}}
denote a finite family of points in
E
{\displaystyle {}E}
. Show that the following statements are equivalent.
The points
P
1
,
…
,
P
n
{\displaystyle {}P_{1},\ldots ,P_{n}}
are
affinely independent .
For every
i
∈
{
1
,
…
,
n
}
{\displaystyle {}i\in \{1,\ldots ,n\}}
,
the family of vectors
P
i
P
1
→
,
…
,
P
i
P
i
−
1
→
,
P
i
P
i
+
1
→
,
…
,
P
i
P
n
→
{\displaystyle {\overrightarrow {P_{i}P_{1}}},\ldots ,{\overrightarrow {P_{i}P_{i-1}}},\,{\overrightarrow {P_{i}P_{i+1}}},\ldots ,{\overrightarrow {P_{i}P_{n}}}}
is
linearly independent .
There exists some
i
∈
{
1
,
…
,
n
}
{\displaystyle {}i\in \{1,\ldots ,n\}}
such that the family of vectors
P
i
P
1
→
,
…
,
P
i
P
i
−
1
→
,
P
i
P
i
+
1
→
,
…
,
P
i
P
n
→
{\displaystyle {\overrightarrow {P_{i}P_{1}}},\ldots ,{\overrightarrow {P_{i}P_{i-1}}},\,{\overrightarrow {P_{i}P_{i+1}}},\ldots ,{\overrightarrow {P_{i}P_{n}}}}
is linearly independent.
The points
P
1
,
…
,
P
n
{\displaystyle {}P_{1},\ldots ,P_{n}}
form an
affine basis
in the
affine subspace
generated
by them.
Let
E
{\displaystyle {}E}
be an
affine space
over the
K
{\displaystyle {}K}
-vector space
V
{\displaystyle {}V}
, and let
P
1
,
…
,
P
n
{\displaystyle {}P_{1},\ldots ,P_{n}}
be a finite family of points in
E
{\displaystyle {}E}
. Show that the following statements are equivalent.
The points form an
affine basis
of
E
{\displaystyle {}E}
.
The points form a minimal
affine generating system
of
E
{\displaystyle {}E}
.
The points are maximally
affinely independent .
Let
E
{\displaystyle {}E}
be an
affine space
over the
K
{\displaystyle {}K}
-vector space
V
{\displaystyle {}V}
, and let
P
1
,
…
,
P
n
{\displaystyle {}P_{1},\ldots ,P_{n}}
be a finite family of points from
E
{\displaystyle {}E}
. Show that these points form an
affine basis
of
E
{\displaystyle {}E}
if and only if they are
affinely independent ,
and they are an
affine generating system
for
E
{\displaystyle {}E}
.
Determine the
polynomials
P
∈
R
[
X
]
{\displaystyle {}P\in \mathbb {R} [X]}
that define an
affine-linear mapping
P
:
R
⟶
R
.
{\displaystyle P\colon \mathbb {R} \longrightarrow \mathbb {R} .}
Let
K
{\displaystyle {}K}
be a
field ,
and let
E
{\displaystyle {}E}
and
F
{\displaystyle {}F}
denote
affine spaces
over the
vector spaces
V
{\displaystyle {}V}
and
W
{\displaystyle {}W}
,
respectively. Let a
mapping
ψ
:
E
⟶
F
,
{\displaystyle \psi \colon E\longrightarrow F,}
a
linear mapping
φ
:
V
⟶
W
,
{\displaystyle \varphi \colon V\longrightarrow W,}
and a point
P
∈
E
{\displaystyle {}P\in E}
be given such that
ψ
(
P
+
v
)
=
ψ
(
P
)
+
φ
(
v
)
{\displaystyle {}\psi (P+v)=\psi (P)+\varphi (v)\,}
holds for all
v
∈
V
{\displaystyle {}v\in V}
.
Show that
ψ
{\displaystyle {}\psi }
is
affine-linear .
Let
ψ
:
R
→
R
{\displaystyle {}\psi \colon \mathbb {R} \rightarrow \mathbb {R} }
be a mapping of the form
ψ
(
x
)
=
a
x
+
b
{\displaystyle {}\psi (x)=ax+b\,}
with certain
a
,
b
∈
R
{\displaystyle {}a,b\in \mathbb {R} }
.
Show directly that
ψ
{\displaystyle {}\psi }
is compatible with
barycentric combinations .
Determine, by a drawing, the image point of
P
{\displaystyle {}P}
under the
affine mapping
φ
{\displaystyle {}\varphi }
given by
φ
(
P
i
)
=
Q
i
{\displaystyle {}\varphi (P_{i})=Q_{i}}
.
Determine, by a drawing, the image point of
P
{\displaystyle {}P}
under the
affine mapping
φ
{\displaystyle {}\varphi }
that is determined by
φ
(
P
i
)
=
Q
i
{\displaystyle {}\varphi (P_{i})=Q_{i}}
.
Describe the
affine plane
E
=
{
(
3
1
4
)
+
s
(
2
7
−
6
)
+
t
(
−
1
5
1
)
∣
s
,
t
∈
R
}
{\displaystyle {}E={\left\{{\begin{pmatrix}3\\1\\4\end{pmatrix}}+s{\begin{pmatrix}2\\7\\-6\end{pmatrix}}+t{\begin{pmatrix}-1\\5\\1\end{pmatrix}}\mid s,t\in \mathbb {R} \right\}}\,}
as the
preimage
over
1
{\displaystyle {}1}
of an
affine mapping
ψ
:
R
3
→
R
{\displaystyle {}\psi \colon \mathbb {R} ^{3}\rightarrow \mathbb {R} }
.
Describe the
affine line
G
=
{
(
6
2
3
)
+
s
(
−
2
5
4
)
∣
s
∈
R
}
{\displaystyle {}G={\left\{{\begin{pmatrix}6\\2\\3\end{pmatrix}}+s{\begin{pmatrix}-2\\5\\4\end{pmatrix}}\mid s\in \mathbb {R} \right\}}\,}
as the
preimage
over
(
1
,
0
)
{\displaystyle {}(1,0)}
of an
affine mapping
ψ
:
R
3
→
R
2
{\displaystyle {}\psi \colon \mathbb {R} ^{3}\rightarrow \mathbb {R} ^{2}}
.
Let
E
{\displaystyle {}E}
and
F
{\displaystyle {}F}
be
affine spaces
over the
field
K
{\displaystyle {}K}
. Show that the
projections
E
×
F
⟶
E
{\displaystyle E\times F\longrightarrow E}
and
E
×
F
⟶
F
{\displaystyle E\times F\longrightarrow F}
are
affine mappings .
Let
E
{\displaystyle {}E}
and
F
{\displaystyle {}F}
be
affine spaces
over the
field
K
{\displaystyle {}K}
. Show that the spaces are
isomorphic
if and only if their
dimensions
coincide.
Let
E
{\displaystyle {}E}
be an
affine space ,
and let
P
1
,
…
,
P
n
{\displaystyle {}P_{1},\ldots ,P_{n}}
be a finite family of points in
E
{\displaystyle {}E}
. Let
F
=
{
(
a
1
,
…
,
a
n
)
∈
K
n
∣
∑
i
=
1
n
a
i
=
1
}
⊂
K
n
.
{\displaystyle {}F={\left\{\left(a_{1},\,\ldots ,\,a_{n}\right)\in K^{n}\mid \sum _{i=1}^{n}a_{i}=1\right\}}\subset K^{n}\,.}
Show that the assignment
(
a
1
,
…
,
a
n
)
⟼
∑
i
=
1
n
a
i
P
i
{\displaystyle \left(a_{1},\,\ldots ,\,a_{n}\right)\longmapsto \sum _{i=1}^{n}a_{i}P_{i}}
defines a well-defined
affine-linear mapping
from
F
{\displaystyle {}F}
to
E
{\displaystyle {}E}
.
Let
φ
:
E
⟶
F
{\displaystyle \varphi \colon E\longrightarrow F}
be an
affine-linear mapping
between the
affine spaces
E
{\displaystyle {}E}
and
F
{\displaystyle {}F}
over
K
{\displaystyle {}K}
. Show that, for every
affine subspace
H
⊆
E
{\displaystyle {}H\subseteq E}
,
the
image
φ
(
H
)
{\displaystyle {}\varphi (H)}
is an affine subspace of
F
{\displaystyle {}F}
.
Let
ψ
:
E
⟶
E
{\displaystyle \psi \colon E\longrightarrow E}
be an
affine mapping
on the
affine space
E
{\displaystyle {}E}
. Show that the
linear part
ψ
0
{\displaystyle {}\psi _{0}}
is the
identity
if and only if
ψ
{\displaystyle {}\psi }
is a
translation.
Let
E
{\displaystyle {}E}
be an
affine space
over the
K
{\displaystyle {}K}
-vector space
V
{\displaystyle {}V}
. Show that the mapping that assigns to an
affine mapping
ψ
:
E
⟶
E
{\displaystyle \psi \colon E\longrightarrow E}
its
linear part
ψ
0
{\displaystyle {}\psi _{0}}
, satisfies the following properties.
(
Id
E
)
0
=
Id
V
,
{\displaystyle {}{\left(\operatorname {Id} _{E}\right)}_{0}=\operatorname {Id} _{V}\,,}
(
ψ
∘
φ
)
0
=
ψ
0
∘
φ
0
.
{\displaystyle {}(\psi \circ \varphi )_{0}=\psi _{0}\circ \varphi _{0}\,.}
Let
E
{\displaystyle {}E}
and
F
{\displaystyle {}F}
be
affine spaces
over the
field
K
{\displaystyle {}K}
, let
P
1
,
…
,
P
n
∈
E
{\displaystyle {}P_{1},\ldots ,P_{n}\in E}
be an
affine basis
of
E
{\displaystyle {}E}
, and let
Q
1
,
…
,
Q
n
∈
F
{\displaystyle {}Q_{1},\ldots ,Q_{n}\in F}
denote points. Let
ψ
:
E
⟶
F
{\displaystyle \psi \colon E\longrightarrow F}
be the corresponding
affine-linear mapping
with
ψ
(
P
i
)
=
Q
i
.
{\displaystyle {}\psi (P_{i})=Q_{i}\,.}
Show the following statements.
a)
ψ
{\displaystyle {}\psi }
is
bijective
if and only if
Q
1
,
…
,
Q
n
{\displaystyle {}Q_{1},\ldots ,Q_{n}}
is an affine basis of
F
{\displaystyle {}F}
.
b)
ψ
{\displaystyle {}\psi }
is
injective
if and only if
Q
1
,
…
,
Q
n
{\displaystyle {}Q_{1},\ldots ,Q_{n}}
are
affinely independent .
c)
ψ
{\displaystyle {}\psi }
is
surjective
if and only if
Q
1
,
…
,
Q
n
{\displaystyle {}Q_{1},\ldots ,Q_{n}}
is an
affine generating system
of
F
{\displaystyle {}F}
.
Let
φ
:
E
⟶
F
{\displaystyle \varphi \colon E\longrightarrow F}
be an
affine-linear mapping
between the
affine spaces
E
{\displaystyle {}E}
and
F
{\displaystyle {}F}
over
K
{\displaystyle {}K}
. Show that the
preimages
φ
−
1
(
Q
)
{\displaystyle {}\varphi ^{-1}(Q)}
for all
Q
∈
F
{\displaystyle {}Q\in F}
are
parallel
to each other.
Compare several concepts for vector spaces and affine spaces, including their mappings.
Hand-in-exercises
Let
φ
:
E
⟶
F
{\displaystyle \varphi \colon E\longrightarrow F}
be an
affine-linear mapping
between the
affine spaces
E
{\displaystyle {}E}
and
F
{\displaystyle {}F}
over
K
{\displaystyle {}K}
. Show that, for every
affine subspace
G
⊆
F
{\displaystyle {}G\subseteq F}
,
the
preimage
φ
−
1
(
G
)
{\displaystyle {}\varphi ^{-1}(G)}
is an affine subspace of
E
{\displaystyle {}E}
.
Describe the
affine plane
E
=
{
(
5
6
−
2
)
+
s
(
3
−
4
8
)
+
t
(
5
4
7
)
∣
s
,
t
∈
R
}
{\displaystyle {}E={\left\{{\begin{pmatrix}5\\6\\-2\end{pmatrix}}+s{\begin{pmatrix}3\\-4\\8\end{pmatrix}}+t{\begin{pmatrix}5\\4\\7\end{pmatrix}}\mid s,t\in \mathbb {R} \right\}}\,}
as the
preimage
over
1
{\displaystyle {}1}
of an
affine mapping
ψ
:
R
3
→
R
{\displaystyle {}\psi \colon \mathbb {R} ^{3}\rightarrow \mathbb {R} }
.
Let
E
{\displaystyle {}E}
be an
affine space
of
dimension
n
{\displaystyle {}n}
, and let
ψ
:
E
⟶
E
{\displaystyle \psi \colon E\longrightarrow E}
denote an
affine mapping .
Let
P
1
,
…
,
P
n
+
1
∈
E
{\displaystyle {}P_{1},\ldots ,P_{n+1}\in E}
be
affinely independent
points, and suppose that they are also
fixed points
of
ψ
{\displaystyle {}\psi }
. Show that
ψ
{\displaystyle {}\psi }
is the identity.
Let
φ
:
E
⟶
F
{\displaystyle \varphi \colon E\longrightarrow F}
be an
affine-linear mapping
between the
affine spaces
E
{\displaystyle {}E}
and
F
{\displaystyle {}F}
over
K
{\displaystyle {}K}
.
a) Show that the
graph
G
{\displaystyle {}G}
of
φ
{\displaystyle {}\varphi }
is an
affine subspace
of the
product space
E
×
F
{\displaystyle {}E\times F}
.
b) Show that the mapping
ψ
:
E
⟶
G
,
P
⟼
(
P
,
φ
(
P
)
)
,
{\displaystyle \psi \colon E\longrightarrow G,P\longmapsto (P,\varphi (P)),}
is an
isomorphism
of affine spaces.
c) Show that
φ
=
p
2
∘
ψ
{\displaystyle {}\varphi =p_{2}\circ \psi \,}
holds, where
p
2
{\displaystyle {}p_{2}}
is the
projection
onto
F
{\displaystyle {}F}
.