Exercise for the break
Lay the
connecting arrow
from your left ear to the right small finger of the person in front of you, in a parallel way, at the tip of the nose of your left neighbor. What is the result?
Exercises
Time is an
affine line
over
R
{\displaystyle {}\mathbb {R} }
. Lay the
connecting arrow
from the moment of your first milk tooth to the moment of your school enrollment at the moment now. What is the result?
Determine the parameter form for the line given by the equation
4
x
+
7
y
=
3
{\displaystyle {}4x+7y=3\,}
in
Q
2
{\displaystyle {}\mathbb {Q} ^{2}}
.
Let
V
{\displaystyle {}V}
be a
vector space ,
U
⊆
V
{\displaystyle {}U\subseteq V}
a
linear subspace ,
and let
E
=
P
+
U
{\displaystyle {}E=P+U}
be an
affine subspace .
Show that, for every point
Q
∈
E
{\displaystyle {}Q\in E}
,
we can also write
E
=
Q
+
U
{\displaystyle {}E=Q+U}
.
Let
V
{\displaystyle {}V}
be a
vector space ,
and let
E
⊆
V
{\displaystyle {}E\subseteq V}
denote an
affine subspace .
Show that
E
{\displaystyle {}E}
is a
linear subspace
of
V
{\displaystyle {}V}
if and only if
E
{\displaystyle {}E}
contains
0
{\displaystyle {}0}
.
Let
φ
:
R
3
⟶
R
,
(
x
y
z
)
⟼
4
x
−
6
y
+
9
z
.
{\displaystyle \varphi \colon \mathbb {R} ^{3}\longrightarrow \mathbb {R} ,{\begin{pmatrix}x\\y\\z\end{pmatrix}}\longmapsto 4x-6y+9z.}
Determine, for the set
E
=
{
Q
∈
R
3
∣
φ
(
Q
)
=
5
}
,
{\displaystyle {}E={\left\{Q\in \mathbb {R} ^{3}\mid \varphi (Q)=5\right\}}\,,}
a description using a
starting point
and a
translation space.
Let
φ
:
R
3
⟶
R
2
,
(
x
y
z
)
⟼
(
7
x
+
y
−
3
z
4
x
+
5
y
)
.
{\displaystyle \varphi \colon \mathbb {R} ^{3}\longrightarrow \mathbb {R} ^{2},{\begin{pmatrix}x\\y\\z\end{pmatrix}}\longmapsto {\begin{pmatrix}7x+y-3z\\4x+5y\end{pmatrix}}.}
Determine, for the set
E
=
{
Q
∈
R
3
∣
φ
(
Q
)
=
(
4
−
2
)
}
,
{\displaystyle {}E={\left\{Q\in \mathbb {R} ^{3}\mid \varphi (Q)={\begin{pmatrix}4\\-2\end{pmatrix}}\right\}}\,,}
a description using a
starting point
and a
translating space.
We consider the three planes
E
,
F
,
G
{\displaystyle {}E,F,G}
in
Q
3
{\displaystyle {}\mathbb {Q} ^{3}}
, given by the following equations.
E
=
{
(
x
,
y
,
z
)
∈
Q
3
∣
5
x
−
4
y
+
3
z
=
2
}
,
{\displaystyle {}E={\left\{(x,y,z)\in \mathbb {Q} ^{3}\mid 5x-4y+3z=2\right\}}\,,}
F
=
{
(
x
,
y
,
z
)
∈
Q
3
∣
7
x
−
5
y
+
6
z
=
3
}
,
{\displaystyle {}F={\left\{(x,y,z)\in \mathbb {Q} ^{3}\mid 7x-5y+6z=3\right\}}\,,}
G
=
{
(
x
,
y
,
z
)
∈
Q
3
∣
2
x
−
y
+
4
z
=
5
}
.
{\displaystyle {}G={\left\{(x,y,z)\in \mathbb {Q} ^{3}\mid 2x-y+4z=5\right\}}\,.}
Determine all points in
E
∩
F
∖
E
∩
F
∩
G
{\displaystyle {}E\cap F\setminus E\cap F\cap G}
.
Let
d
∈
N
+
{\displaystyle {}d\in \mathbb {N} _{+}}
,
and let
K
{\displaystyle {}K}
denote a
field .
Let
n
{\displaystyle {}n}
different elements
a
1
,
…
,
a
n
∈
K
{\displaystyle {}a_{1},\ldots ,a_{n}\in K}
and
n
{\displaystyle {}n}
elements
b
1
,
…
,
b
n
∈
K
{\displaystyle {}b_{1},\ldots ,b_{n}\in K}
be given. Show that the set
E
{\displaystyle {}E}
of all polynomials
P
{\displaystyle {}P}
of degree at most
d
{\displaystyle {}d}
, satisfying
P
(
a
i
)
=
b
i
{\displaystyle {}P(a_{i})=b_{i}\,}
for
i
=
1
,
…
,
n
{\displaystyle {}i=1,\ldots ,n}
,
is an
affine subspace
of
K
[
X
]
≤
d
{\displaystyle {}K[X]_{\leq d}}
. What is the corresponding linear subspace? What can we say about the
dimension
of
E
{\displaystyle {}E}
, when is
E
{\displaystyle {}E}
empty?
Let
E
{\displaystyle {}E}
be an
affine space
over the
K
{\displaystyle {}K}
-vector space
V
{\displaystyle {}V}
. Show the following identities in
V
{\displaystyle {}V}
.
P
P
→
=
0
{\displaystyle {}{\overrightarrow {PP}}=0}
for
P
∈
E
{\displaystyle {}P\in E}
.
P
Q
→
=
−
Q
P
→
{\displaystyle {}{\overrightarrow {PQ}}=-{\overrightarrow {QP}}}
for
P
,
Q
∈
E
{\displaystyle {}P,Q\in E}
.
P
Q
→
+
Q
R
→
=
P
R
→
{\displaystyle {}{\overrightarrow {PQ}}+{\overrightarrow {QR}}={\overrightarrow {PR}}}
for
P
,
Q
,
R
∈
E
{\displaystyle {}P,Q,R\in E}
.
Show that the empty set is an
affine space
over any
K
{\displaystyle {}K}
-vector space
V
{\displaystyle {}V}
.
Let
E
{\displaystyle {}E}
be a nonempty affine space over a
K
{\displaystyle {}K}
-vector space
V
{\displaystyle {}V}
. Let
P
∈
E
{\displaystyle {}P\in E}
be a fixed point, and let
θ
:
V
⟶
E
,
v
⟼
P
+
v
,
{\displaystyle \theta \colon V\longrightarrow E,v\longmapsto P+v,}
be the corresponding bijection. Using this bijection, we identify
E
{\displaystyle {}E}
with
E
′
=
{
(
v
,
1
)
∈
V
×
K
∣
v
∈
V
}
{\displaystyle {}E'={\left\{(v,1)\in V\times K\mid v\in V\right\}}\,}
via the mapping
φ
:
E
⟶
E
′
,
P
⟼
(
θ
−
1
(
P
)
,
1
)
.
{\displaystyle \varphi \colon E\longrightarrow E',P\longmapsto (\theta ^{-1}(P),1).}
a) Show that
E
′
{\displaystyle {}E'}
is an
affine subspace
of
V
×
K
{\displaystyle {}V\times K}
, with translation space
V
×
0
{\displaystyle {}V\times 0}
.
b) Show that
φ
(
Q
+
v
)
=
φ
(
Q
)
+
v
{\displaystyle {}\varphi (Q+v)=\varphi (Q)+v\,}
holds for all
Q
∈
E
{\displaystyle {}Q\in E}
.
Determine by a drawing the point that is given by the
barycentric combination
0
,
2
P
1
+
0
,
4
P
2
−
0
,
3
P
3
+
0
,
7
P
4
{\displaystyle 0,2P_{1}+0,4P_{2}-0,3P_{3}+0,7P_{4}}
in the image on the right. Start with different starting points.
Show that, for a family
P
i
{\displaystyle {}P_{i}}
,
i
∈
I
{\displaystyle {}i\in I}
,
of points in an
affine space
E
{\displaystyle {}E}
, a
barycentric combination
∑
i
∈
I
a
i
P
i
{\displaystyle \sum _{i\in I}a_{i}P_{i}}
defines a unique point in
E
{\displaystyle {}E}
.
Let
P
{\displaystyle {}P}
be a point in an
affine space
E
{\displaystyle {}E}
over
V
{\displaystyle {}V}
. Show that the following expressions are
barycentric combinations
for
P
{\displaystyle {}P}
(let
Q
∈
E
{\displaystyle {}Q\in E}
and
v
∈
V
{\displaystyle {}v\in V}
).
P
{\displaystyle {}P}
.
P
+
Q
−
Q
{\displaystyle {}P+Q-Q}
.
(
P
+
v
)
−
(
Q
+
v
)
+
Q
{\displaystyle {}(P+v)-(Q+v)+Q}
.
Instead of
Q
P
→
{\displaystyle {}{\overrightarrow {QP}}}
, we often write
P
−
Q
{\displaystyle {}P-Q}
. The following exercises show that this does not lead to misconceptions.
Let
V
{\displaystyle {}V}
be a
K
{\displaystyle {}K}
-vector space ,
which we consider as an
affine space
over itself. Let
P
,
Q
∈
V
{\displaystyle {}P,Q\in V}
be points. Show
P
Q
→
=
Q
−
P
{\displaystyle {}{\overrightarrow {PQ}}=Q-P}
.
Let
E
{\displaystyle {}E}
be an
affine space
over the
K
{\displaystyle {}K}
-vector space
V
{\displaystyle {}V}
. Let
P
i
{\displaystyle {}P_{i}}
,
i
∈
I
{\displaystyle {}i\in I}
,
and
P
,
Q
{\displaystyle {}P,Q}
denote points in
E
{\displaystyle {}E}
, and let
∑
i
∈
I
a
i
P
i
{\displaystyle {}\sum _{i\in I}a_{i}P_{i}}
be a
barycentric combination .
Show that
P
−
Q
+
∑
i
∈
I
a
i
P
i
=
Q
P
→
+
(
∑
i
∈
I
a
i
P
i
)
{\displaystyle {}P-Q+\sum _{i\in I}a_{i}P_{i}={\overrightarrow {QP}}+{\left(\sum _{i\in I}a_{i}P_{i}\right)}\,}
holds, where the left-hand expression is a barycentric combination.
Let
V
{\displaystyle {}V}
be a
vector space
over
K
{\displaystyle {}K}
, which we consider as an
affine space .
Let
∑
i
∈
I
a
i
v
i
{\displaystyle {}\sum _{i\in I}a_{i}v_{i}}
with
v
i
∈
V
{\displaystyle {}v_{i}\in V}
,
a
i
∈
K
{\displaystyle {}a_{i}\in K}
and
∑
i
∈
I
a
i
=
1
{\displaystyle {}\sum _{i\in I}a_{i}=1}
denote a
barycentric combination .
Show that the point defined by this barycentric combination in affine space equals the vector sum
∑
i
∈
I
a
i
v
i
{\displaystyle {}\sum _{i\in I}a_{i}v_{i}}
.
What are the
barycentric coordinates
of your favorite color in additive mixing?
Let
E
{\displaystyle {}E}
be an
affine space
over a
K
{\displaystyle {}K}
-vector space
V
{\displaystyle {}V}
, and let
P
1
,
…
,
P
n
{\displaystyle {}P_{1},\ldots ,P_{n}}
denote a finite family of points in
E
{\displaystyle {}E}
. For
j
=
1
,
…
,
k
{\displaystyle {}j=1,\ldots ,k}
,
let
Q
j
=
∑
i
=
1
n
a
i
j
P
i
,
{\displaystyle {}Q_{j}=\sum _{i=1}^{n}a_{ij}P_{i}\,,}
with
∑
i
=
1
n
a
i
j
=
1
{\displaystyle {}\sum _{i=1}^{n}a_{ij}=1}
for each
j
{\displaystyle {}j}
, be a family of
barycentric combinations
of the
P
i
{\displaystyle {}P_{i}}
. Let
b
1
,
…
,
b
k
∈
K
{\displaystyle {}b_{1},\ldots ,b_{k}\in K}
fulfilling
∑
j
=
1
k
b
j
=
1
{\displaystyle {}\sum _{j=1}^{k}b_{j}=1}
.
Show that one can write
∑
j
=
1
k
b
j
Q
j
{\displaystyle \sum _{j=1}^{k}b_{j}Q_{j}}
as a barycentric combination of the
P
i
{\displaystyle {}P_{i}}
.
Imagine four points in the natural
3
{\displaystyle {}3}
-space such that they form an
affine basis
of the space.
Imagine four points in the natural
3
{\displaystyle {}3}
-space such that they do not form an
affine basis
of the space, but such that each three of these points form an affine basis in an affine plane.
Hand-in-exercises
Let
φ
:
R
4
⟶
R
2
,
(
x
y
z
w
)
⟼
(
6
x
−
5
y
−
3
z
+
8
w
x
+
5
y
+
4
z
−
2
w
)
.
{\displaystyle \varphi \colon \mathbb {R} ^{4}\longrightarrow \mathbb {R} ^{2},{\begin{pmatrix}x\\y\\z\\w\end{pmatrix}}\longmapsto {\begin{pmatrix}6x-5y-3z+8w\\x+5y+4z-2w\end{pmatrix}}.}
Determine, for the set
E
=
{
Q
∈
R
4
∣
φ
(
Q
)
=
(
−
3
−
7
)
}
,
{\displaystyle {}E={\left\{Q\in \mathbb {R} ^{4}\mid \varphi (Q)={\begin{pmatrix}-3\\-7\end{pmatrix}}\right\}}\,,}
a description using a
starting point
and a
translating space.
Let
V
{\displaystyle {}V}
be a
K
{\displaystyle {}K}
-vector space .
We consider the set
E
=
{
(
v
,
1
)
∣
v
∈
V
}
⊂
V
×
K
,
{\displaystyle {}E={\left\{(v,1)\mid v\in V\right\}}\subset V\times K\,,}
which is an
affine space
over
V
{\displaystyle {}V}
.
a) Show that the points
P
i
=
(
v
i
,
1
)
{\displaystyle {}P_{i}=(v_{i},1)}
,
i
=
1
,
…
,
n
{\displaystyle {}i=1,\ldots ,n}
,
form an
affine basis
of
E
{\displaystyle {}E}
if and only if the
P
i
{\displaystyle {}P_{i}}
(considered as vectors in
V
×
K
{\displaystyle {}V\times K}
)
form a
vector space basis
of
V
×
K
{\displaystyle {}V\times K}
.
b) Show that, in this case, for a point
P
∈
E
{\displaystyle {}P\in E}
,
the
barycentric coordinates
of
P
{\displaystyle {}P}
with respect to
P
1
,
…
,
P
n
{\displaystyle {}P_{1},\ldots ,P_{n}}
equal the coordinates of
P
{\displaystyle {}P}
with respect to the vector space basis
P
1
,
…
,
P
n
{\displaystyle {}P_{1},\ldots ,P_{n}}
.
Let
E
{\displaystyle {}E}
and
F
{\displaystyle {}F}
be
affine spaces
over the
field
K
{\displaystyle {}K}
. Show that the
product space
E
×
F
{\displaystyle {}E\times F}
is also an affine space.
Let
E
{\displaystyle {}E}
and
F
{\displaystyle {}F}
be
affine spaces
over the
field
K
{\displaystyle {}K}
, and let an
affine basis
P
1
,
…
,
P
n
{\displaystyle {}P_{1},\ldots ,P_{n}}
of
E
{\displaystyle {}E}
and an affine basis
Q
1
,
…
,
Q
m
{\displaystyle {}Q_{1},\ldots ,Q_{m}}
of
F
{\displaystyle {}F}
be given. Show that
(
P
1
,
Q
1
)
,
(
P
1
,
Q
2
)
,
…
,
(
P
1
,
Q
m
)
,
(
P
2
,
Q
1
)
,
(
P
3
,
Q
1
)
,
…
,
(
P
n
,
Q
1
)
{\displaystyle (P_{1},Q_{1}),\,(P_{1},Q_{2}),\ldots ,(P_{1},Q_{m}),\,(P_{2},Q_{1}),\,(P_{3},Q_{1}),\ldots ,(P_{n},Q_{1})}
is an affine basis of the product space
E
×
F
{\displaystyle {}E\times F}
.